Nespojitá regrese
Nespojitá regrese nebo regresní diskontinuita, anglicky regression discontinuity design, RDD, je kvaziexperimentální design a analytická metoda, umožňující stanovit kauzální vliv intervence v okolí prahové hodnoty, jejíž překročení intervenci spouští. Metoda je založena na porovnání případů pod a nad příslušným prahem, pokud se tyto případy jinak navzájem podobají – jejich zařazení do skupin s intervencí či bez ní je v takovém případě možno považovat za vcelku náhodné. Příklad: na vyšetření mamografem zdarma mají v Česku nárok ženy od věku 45 let. Efekt tohoto výdaje zdravotních pojišťoven by bylo možno zkoumat porovnáním nemocnosti rakovinou prsu dvou skupin žen: 1. ženy mezi 43 až nedosaženými 45 lety (kontrolní skupina) a 2. ženy mezi dosaženými 45 lety a 47 lety (skupina s intervencí). Metoda nespojité regrese byla poprvé popsána Donaldem Thistlethwaitem a Donaldem Campbellem, kteří tak vyhodnocovali stipendijní programy.[1][2]
Při vyhodnocení se nejčastěji používá lokální lineární regrese ve tvaru
kde je práh intervence a je binární proměnná rovná jedné, pokud . Dále je šířka intervalu použitých dat, takže . Na obou stranách prahu se tak odhadují různé regresní koeficienty včetně konstantního členu. Pro zpřesnění výsledků je možné použít „trojúhelníkové“ jádro, které dává jednotlivým případům váhu lineárně klesající s jejich vzdáleností od intervenčního prahu,[3] třebaže to ztěžuje interpretaci výsledků.
Reference
- ↑ THISTLETHWAITE, D.; CAMPBELL, D. Regression-Discontinuity Analysis: An alternative to the ex post facto experiment. Journal of Educational Psychology. 1960, s. 309–317. DOI 10.1037/h0044319.
- ↑ IMBENS, G.; LEMIEUX, T. Regression Discontinuity Designs: A Guide to Practice. Journal of Econometrics. 2008, s. 615–635. DOI 10.1016/j.jeconom.2007.05.001.
- ↑ FAN; GIJBELS. Local Polynomial Modelling and Its Applications. London: Chapman and Hall, 1996. ISBN 0-412-98321-4.