8-Aminoquinoline

8-Aminoquinoline
Names
Preferred IUPAC name
Quinolin-8-amine
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.008.572 Edit this at Wikidata
UNII
  • InChI=1S/C9H8N2/c10-8-5-1-3-7-4-2-6-11-9(7)8/h1-6H,10H2 checkY
    Key: WREVVZMUNPAPOV-UHFFFAOYSA-N checkY
  • Nc1cccc2cccnc12
Properties
C9H8N2
Molar mass 144.177 g·mol−1
Appearance pale yellow solid
Density 1.337 g/cm3[1]
Melting point 65 °C (149 °F; 338 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

8-Aminoquinoline is the 8-amino derivative of quinoline. Often abbreviated AQ, it is a pale yellow solid. It is structurally analogous to 8-hydroxyquinoline.[2]

Drug derivatives

The derivatives primaquine, tafenoquine and pamaquine have been tested for anti-malaria activity.[3][4] Primaquine is still used routinely worldwide as part of the treatment of Plasmodium vivax and Plasmodium ovale malaria, although how it prevents malarial recurrences is not, at present, clear.[5] Tafenoquine was approved for medical use in Australia and in the United States in 2018.[6][7]

Directing group

The amine functional group is amenable to formation of amides, and thus can serve as a directing group in organic synthesis.[8][9]

Preparation

The original synthesis of AQ involved nitration of quinoline to give a mixture of the 5- and 8-nitroderivatives, which were separated by distillation and sublimation. Reduction of the 8-nitro isomer with tin powder in the presence of hydrochloric acid gave the amines.[10] AQ can also be produced by amination of 8-chloroquinoline.

References

  1. ^ Van Meervelt L, Goethals M, Leroux N, Zeegers-Huyskens T (1997). "X-ray and vibrational studies of 8-aminoquinoline. Evidence for a three-center hydrogen bond". Journal of Physical Organic Chemistry. 10 (9): 680–686. doi:10.1002/(SICI)1099-1395(199709)10:9<680::AID-POC902>3.0.CO;2-Y.
  2. ^ Rej S, Ano Y, Chatani N (2020). "Bidentate Directing Groups: An Efficient Tool in C–H Bond Functionalization Chemistry for the Expedient Construction of C–C Bonds". Chemical Reviews. 120 (3): 1788–1887. doi:10.1021/acs.chemrev.9b00495. PMID 31904219. S2CID 209895281.
  3. ^ Nqoro X, Tobeka N, Aderibigbe B (2017). "Quinoline-Based Hybrid Compounds with Antimalarial Activity". Molecules. 22 (12): 2268. doi:10.3390/molecules22122268. PMC 6149725. PMID 29257067.
  4. ^ Sweeney AW, Blackburn CRB, KH Rieckmann (1 August 2004). "Short report: The activity of pamaquine, an 8-aminoquinoline drug, against sporozoite-induced infections of Plasmodium vivax (New Guinea strains)". Am J Trop Med Hyg. 71 (2): 187–189. doi:10.4269/ajtmh.2004.71.2.0700187. PMID 15306708.
  5. ^ Markus MB (2023). "Putative contribution of 8-aminoquinolines to preventing recrudescence of malaria". Tropical Medicine and Infectious Disease. 8 (5): 278. doi:10.3390/tropicalmed8050278. PMC 10223033. PMID 37235326.
  6. ^ Haston JC, Hwang J, Tan KR (November 2019). "Guidance for Using Tafenoquine for Prevention and Antirelapse Therapy for Malaria — United States, 2019" (PDF). MMWR. Morbidity and Mortality Weekly Report. 68 (46): 1062–1068. doi:10.15585/mmwr.mm6846a4. PMC 6871897. PMID 31751320.
  7. ^ Hounkpatin AB, Kreidenweiss A, Held J (March 2019). "Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: a review on the mode of action and emerging trial data". Infection and Drug Resistance. 12: 553–570. doi:10.2147/IDR.S151031. PMC 6411314. PMID 30881061.
  8. ^ Daugulis O, Roane J, Tran LD (2015). "Bidentate, Monoanionic Auxiliary-Directed Functionalization of Carbon–Hydrogen Bonds". Accounts of Chemical Research. 48 (4): 1053–1064. doi:10.1021/ar5004626. PMC 4406856. PMID 25756616.
  9. ^ Corbet M, De Campo F (2013). "8-Aminoquinoline: A Powerful Directing Group in Metal-Catalyzed Direct Functionalization of C-H Bonds". Angewandte Chemie International Edition. 52 (38): 9896–9898. doi:10.1002/anie.201303556. PMID 23939922.
  10. ^ Kaufmann A, Zeller O (1917). "Über Nitro-amino-chinoline". Berichte der Deutschen Chemischen Gesellschaft. 50 (2): 1626–1630. doi:10.1002/cber.19170500264.