Advanced z-transform In mathematics and signal processing , the advanced z-transform is an extension of the z-transform , to incorporate ideal delays that are not multiples of the sampling time . The advanced z-transform is widely applied, for example, to accurately model processing delays in digital control . It is also known as the modified z-transform .
It takes the form
F ( z , m ) = ∑ k = 0 ∞ f ( k T + m ) z − k {\displaystyle F(z,m)=\sum _{k=0}^{\infty }f(kT+m)z^{-k} where
T is the sampling period m (the "delay parameter") is a fraction of the sampling period [ 0 , T ] . {\displaystyle [0,T].}
Properties If the delay parameter, m , is considered fixed then all the properties of the z-transform hold for the advanced z-transform.
Linearity Z { ∑ k = 1 n c k f k ( t ) } = ∑ k = 1 n c k F k ( z , m ) . {\displaystyle {\mathcal {Z}\left\{\sum _{k=1}^{n}c_{k}f_{k}(t)\right\}=\sum _{k=1}^{n}c_{k}F_{k}(z,m).}
Time shift Z { u ( t − n T ) f ( t − n T ) } = z − n F ( z , m ) . {\displaystyle {\mathcal {Z}\left\{u(t-nT)f(t-nT)\right\}=z^{-n}F(z,m).}
Damping Z { f ( t ) e − a t } = e − a m F ( e a T z , m ) . {\displaystyle {\mathcal {Z}\left\{f(t)e^{-a\,t}\right\}=e^{-a\,m}F(e^{a\,T}z,m).}
Time multiplication Z { t y f ( t ) } = ( − T z d d z + m ) y F ( z , m ) . {\displaystyle {\mathcal {Z}\left\{t^{y}f(t)\right\}=\left(-Tz{\frac {d}{dz}+m\right)^{y}F(z,m).}
Final value theorem lim k → ∞ f ( k T + m ) = lim z → 1 ( 1 − z − 1 ) F ( z , m ) . {\displaystyle \lim _{k\to \infty }f(kT+m)=\lim _{z\to 1}(1-z^{-1})F(z,m).}
Example Consider the following example where f ( t ) = cos ( ω t ) {\displaystyle f(t)=\cos(\omega t)} :
F ( z , m ) = Z { cos ( ω ( k T + m ) ) } = Z { cos ( ω k T ) cos ( ω m ) − sin ( ω k T ) sin ( ω m ) } = cos ( ω m ) Z { cos ( ω k T ) } − sin ( ω m ) Z { sin ( ω k T ) } = cos ( ω m ) z ( z − cos ( ω T ) ) z 2 − 2 z cos ( ω T ) + 1 − sin ( ω m ) z sin ( ω T ) z 2 − 2 z cos ( ω T ) + 1 = z 2 cos ( ω m ) − z cos ( ω ( T − m ) ) z 2 − 2 z cos ( ω T ) + 1 . {\displaystyle {\begin{aligned}F(z,m)&={\mathcal {Z}\left\{\cos \left(\omega \left(kT+m\right)\right)\right\}\\&={\mathcal {Z}\left\{\cos(\omega kT)\cos(\omega m)-\sin(\omega kT)\sin(\omega m)\right\}\\&=\cos(\omega m){\mathcal {Z}\left\{\cos(\omega kT)\right\}-\sin(\omega m){\mathcal {Z}\left\{\sin(\omega kT)\right\}\\&=\cos(\omega m){\frac {z\left(z-\cos(\omega T)\right)}{z^{2}-2z\cos(\omega T)+1}-\sin(\omega m){\frac {z\sin(\omega T)}{z^{2}-2z\cos(\omega T)+1}\\&={\frac {z^{2}\cos(\omega m)-z\cos(\omega (T-m))}{z^{2}-2z\cos(\omega T)+1}.\end{aligned} If m = 0 {\displaystyle m=0} then F ( z , m ) {\displaystyle F(z,m)} reduces to the transform
F ( z , 0 ) = z 2 − z cos ( ω T ) z 2 − 2 z cos ( ω T ) + 1 , {\displaystyle F(z,0)={\frac {z^{2}-z\cos(\omega T)}{z^{2}-2z\cos(\omega T)+1},} which is clearly just the z -transform of f ( t ) {\displaystyle f(t)} .
References
The article is a derivative under the Creative Commons Attribution-ShareAlike License .
A link to the original article can be found here and attribution parties here
By using this site, you agree to the Terms of Use . Gpedia ® is a registered trademark of the Cyberajah Pty Ltd