Barrelled set

In functional analysis, a subset of a topological vector space (TVS) is called a barrel or a barrelled set if it is closed convex balanced and absorbing.

Barrelled sets play an important role in the definitions of several classes of topological vector spaces, such as barrelled spaces.

Definitions

Let be a topological vector space (TVS). A subset of is called a barrel if it is closed convex balanced and absorbing in A subset of is called bornivorous[1] and a bornivore if it absorbs every bounded subset of Every bornivorous subset of is necessarily an absorbing subset of

Let be a subset of a topological vector space If is a balanced absorbing subset of and if there exists a sequence of balanced absorbing subsets of such that for all then is called a suprabarrel[2] in where moreover, is said to be a(n):

  • bornivorous suprabarrel if in addition every is a closed and bornivorous subset of for every [2]
  • ultrabarrel if in addition every is a closed subset of for every [2]
  • bornivorous ultrabarrel if in addition every is a closed and bornivorous subset of for every [2]

In this case, is called a defining sequence for [2]

Properties

Note that every bornivorous ultrabarrel is an ultrabarrel and that every bornivorous suprabarrel is a suprabarrel.

Examples

See also

References

  1. ^ Narici & Beckenstein 2011, pp. 441–457.
  2. ^ a b c d e Khaleelulla 1982, p. 65.

Bibliography