The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals.
∫ arsinh ( a x ) d x = x arsinh ( a x ) − a 2 x 2 + 1 a + C {\displaystyle \int \operatorname {arsinh} (ax)\,dx=x\operatorname {arsinh} (ax)-{\frac {\sqrt {a^{2}x^{2}+1}{a}+C}
∫ x arsinh ( a x ) d x = x 2 arsinh ( a x ) 2 + arsinh ( a x ) 4 a 2 − x a 2 x 2 + 1 4 a + C {\displaystyle \int x\operatorname {arsinh} (ax)\,dx={\frac {x^{2}\operatorname {arsinh} (ax)}{2}+{\frac {\operatorname {arsinh} (ax)}{4a^{2}-{\frac {x{\sqrt {a^{2}x^{2}+1}{4a}+C}
∫ x 2 arsinh ( a x ) d x = x 3 arsinh ( a x ) 3 − ( a 2 x 2 − 2 ) a 2 x 2 + 1 9 a 3 + C {\displaystyle \int x^{2}\operatorname {arsinh} (ax)\,dx={\frac {x^{3}\operatorname {arsinh} (ax)}{3}-{\frac {\left(a^{2}x^{2}-2\right){\sqrt {a^{2}x^{2}+1}{9a^{3}+C}
∫ x m arsinh ( a x ) d x = x m + 1 arsinh ( a x ) m + 1 − a m + 1 ∫ x m + 1 a 2 x 2 + 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {arsinh} (ax)\,dx={\frac {x^{m+1}\operatorname {arsinh} (ax)}{m+1}-{\frac {a}{m+1}\int {\frac {x^{m+1}{\sqrt {a^{2}x^{2}+1}\,dx\quad (m\neq -1)}
∫ arsinh ( a x ) 2 d x = 2 x + x arsinh ( a x ) 2 − 2 a 2 x 2 + 1 arsinh ( a x ) a + C {\displaystyle \int \operatorname {arsinh} (ax)^{2}\,dx=2x+x\operatorname {arsinh} (ax)^{2}-{\frac {2{\sqrt {a^{2}x^{2}+1}\operatorname {arsinh} (ax)}{a}+C}
∫ arsinh ( a x ) n d x = x arsinh ( a x ) n − n a 2 x 2 + 1 arsinh ( a x ) n − 1 a + n ( n − 1 ) ∫ arsinh ( a x ) n − 2 d x {\displaystyle \int \operatorname {arsinh} (ax)^{n}\,dx=x\operatorname {arsinh} (ax)^{n}-{\frac {n{\sqrt {a^{2}x^{2}+1}\operatorname {arsinh} (ax)^{n-1}{a}+n(n-1)\int \operatorname {arsinh} (ax)^{n-2}\,dx}
∫ arsinh ( a x ) n d x = − x arsinh ( a x ) n + 2 ( n + 1 ) ( n + 2 ) + a 2 x 2 + 1 arsinh ( a x ) n + 1 a ( n + 1 ) + 1 ( n + 1 ) ( n + 2 ) ∫ arsinh ( a x ) n + 2 d x ( n ≠ − 1 , − 2 ) {\displaystyle \int \operatorname {arsinh} (ax)^{n}\,dx=-{\frac {x\operatorname {arsinh} (ax)^{n+2}{(n+1)(n+2)}+{\frac {\sqrt {a^{2}x^{2}+1}\operatorname {arsinh} (ax)^{n+1}{a(n+1)}+{\frac {1}{(n+1)(n+2)}\int \operatorname {arsinh} (ax)^{n+2}\,dx\quad (n\neq -1,-2)}
∫ arcosh ( a x ) d x = x arcosh ( a x ) − a x + 1 a x − 1 a + C {\displaystyle \int \operatorname {arcosh} (ax)\,dx=x\operatorname {arcosh} (ax)-{\frac {\sqrt {ax+1}{\sqrt {ax-1}{a}+C}
∫ x arcosh ( a x ) d x = x 2 arcosh ( a x ) 2 − arcosh ( a x ) 4 a 2 − x a x + 1 a x − 1 4 a + C {\displaystyle \int x\operatorname {arcosh} (ax)\,dx={\frac {x^{2}\operatorname {arcosh} (ax)}{2}-{\frac {\operatorname {arcosh} (ax)}{4a^{2}-{\frac {x{\sqrt {ax+1}{\sqrt {ax-1}{4a}+C}
∫ x 2 arcosh ( a x ) d x = x 3 arcosh ( a x ) 3 − ( a 2 x 2 + 2 ) a x + 1 a x − 1 9 a 3 + C {\displaystyle \int x^{2}\operatorname {arcosh} (ax)\,dx={\frac {x^{3}\operatorname {arcosh} (ax)}{3}-{\frac {\left(a^{2}x^{2}+2\right){\sqrt {ax+1}{\sqrt {ax-1}{9a^{3}+C}
∫ x m arcosh ( a x ) d x = x m + 1 arcosh ( a x ) m + 1 − a m + 1 ∫ x m + 1 a x + 1 a x − 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {arcosh} (ax)\,dx={\frac {x^{m+1}\operatorname {arcosh} (ax)}{m+1}-{\frac {a}{m+1}\int {\frac {x^{m+1}{\sqrt {ax+1}{\sqrt {ax-1}\,dx\quad (m\neq -1)}
∫ arcosh ( a x ) 2 d x = 2 x + x arcosh ( a x ) 2 − 2 a x + 1 a x − 1 arcosh ( a x ) a + C {\displaystyle \int \operatorname {arcosh} (ax)^{2}\,dx=2x+x\operatorname {arcosh} (ax)^{2}-{\frac {2{\sqrt {ax+1}{\sqrt {ax-1}\operatorname {arcosh} (ax)}{a}+C}
∫ arcosh ( a x ) n d x = x arcosh ( a x ) n − n a x + 1 a x − 1 arcosh ( a x ) n − 1 a + n ( n − 1 ) ∫ arcosh ( a x ) n − 2 d x {\displaystyle \int \operatorname {arcosh} (ax)^{n}\,dx=x\operatorname {arcosh} (ax)^{n}-{\frac {n{\sqrt {ax+1}{\sqrt {ax-1}\operatorname {arcosh} (ax)^{n-1}{a}+n(n-1)\int \operatorname {arcosh} (ax)^{n-2}\,dx}
∫ arcosh ( a x ) n d x = − x arcosh ( a x ) n + 2 ( n + 1 ) ( n + 2 ) + a x + 1 a x − 1 arcosh ( a x ) n + 1 a ( n + 1 ) + 1 ( n + 1 ) ( n + 2 ) ∫ arcosh ( a x ) n + 2 d x ( n ≠ − 1 , − 2 ) {\displaystyle \int \operatorname {arcosh} (ax)^{n}\,dx=-{\frac {x\operatorname {arcosh} (ax)^{n+2}{(n+1)(n+2)}+{\frac {\sqrt {ax+1}{\sqrt {ax-1}\operatorname {arcosh} (ax)^{n+1}{a(n+1)}+{\frac {1}{(n+1)(n+2)}\int \operatorname {arcosh} (ax)^{n+2}\,dx\quad (n\neq -1,-2)}
∫ artanh ( a x ) d x = x artanh ( a x ) + ln ( 1 − a 2 x 2 ) 2 a + C {\displaystyle \int \operatorname {artanh} (ax)\,dx=x\operatorname {artanh} (ax)+{\frac {\ln \left(1-a^{2}x^{2}\right)}{2a}+C}
∫ x artanh ( a x ) d x = x 2 artanh ( a x ) 2 − artanh ( a x ) 2 a 2 + x 2 a + C {\displaystyle \int x\operatorname {artanh} (ax)\,dx={\frac {x^{2}\operatorname {artanh} (ax)}{2}-{\frac {\operatorname {artanh} (ax)}{2a^{2}+{\frac {x}{2a}+C}
∫ x 2 artanh ( a x ) d x = x 3 artanh ( a x ) 3 + ln ( 1 − a 2 x 2 ) 6 a 3 + x 2 6 a + C {\displaystyle \int x^{2}\operatorname {artanh} (ax)\,dx={\frac {x^{3}\operatorname {artanh} (ax)}{3}+{\frac {\ln \left(1-a^{2}x^{2}\right)}{6a^{3}+{\frac {x^{2}{6a}+C}
∫ x m artanh ( a x ) d x = x m + 1 artanh ( a x ) m + 1 − a m + 1 ∫ x m + 1 1 − a 2 x 2 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {artanh} (ax)\,dx={\frac {x^{m+1}\operatorname {artanh} (ax)}{m+1}-{\frac {a}{m+1}\int {\frac {x^{m+1}{1-a^{2}x^{2}\,dx\quad (m\neq -1)}
∫ arcoth ( a x ) d x = x arcoth ( a x ) + ln ( a 2 x 2 − 1 ) 2 a + C {\displaystyle \int \operatorname {arcoth} (ax)\,dx=x\operatorname {arcoth} (ax)+{\frac {\ln \left(a^{2}x^{2}-1\right)}{2a}+C}
∫ x arcoth ( a x ) d x = x 2 arcoth ( a x ) 2 − arcoth ( a x ) 2 a 2 + x 2 a + C {\displaystyle \int x\operatorname {arcoth} (ax)\,dx={\frac {x^{2}\operatorname {arcoth} (ax)}{2}-{\frac {\operatorname {arcoth} (ax)}{2a^{2}+{\frac {x}{2a}+C}
∫ x 2 arcoth ( a x ) d x = x 3 arcoth ( a x ) 3 + ln ( a 2 x 2 − 1 ) 6 a 3 + x 2 6 a + C {\displaystyle \int x^{2}\operatorname {arcoth} (ax)\,dx={\frac {x^{3}\operatorname {arcoth} (ax)}{3}+{\frac {\ln \left(a^{2}x^{2}-1\right)}{6a^{3}+{\frac {x^{2}{6a}+C}
∫ x m arcoth ( a x ) d x = x m + 1 arcoth ( a x ) m + 1 + a m + 1 ∫ x m + 1 a 2 x 2 − 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {arcoth} (ax)\,dx={\frac {x^{m+1}\operatorname {arcoth} (ax)}{m+1}+{\frac {a}{m+1}\int {\frac {x^{m+1}{a^{2}x^{2}-1}\,dx\quad (m\neq -1)}
∫ arsech ( a x ) d x = x arsech ( a x ) − 2 a arctan 1 − a x 1 + a x + C {\displaystyle \int \operatorname {arsech} (ax)\,dx=x\operatorname {arsech} (ax)-{\frac {2}{a}\operatorname {arctan} {\sqrt {\frac {1-ax}{1+ax}+C}
∫ x arsech ( a x ) d x = x 2 arsech ( a x ) 2 − ( 1 + a x ) 2 a 2 1 − a x 1 + a x + C {\displaystyle \int x\operatorname {arsech} (ax)\,dx={\frac {x^{2}\operatorname {arsech} (ax)}{2}-{\frac {(1+ax)}{2a^{2}{\sqrt {\frac {1-ax}{1+ax}+C}
∫ x 2 arsech ( a x ) d x = x 3 arsech ( a x ) 3 − 1 3 a 3 arctan 1 − a x 1 + a x − x ( 1 + a x ) 6 a 2 1 − a x 1 + a x + C {\displaystyle \int x^{2}\operatorname {arsech} (ax)\,dx={\frac {x^{3}\operatorname {arsech} (ax)}{3}-{\frac {1}{3a^{3}\operatorname {arctan} {\sqrt {\frac {1-ax}{1+ax}-{\frac {x(1+ax)}{6a^{2}{\sqrt {\frac {1-ax}{1+ax}+C}
∫ x m arsech ( a x ) d x = x m + 1 arsech ( a x ) m + 1 + 1 m + 1 ∫ x m ( 1 + a x ) 1 − a x 1 + a x d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {arsech} (ax)\,dx={\frac {x^{m+1}\operatorname {arsech} (ax)}{m+1}+{\frac {1}{m+1}\int {\frac {x^{m}{(1+ax){\sqrt {\frac {1-ax}{1+ax}\,dx\quad (m\neq -1)}
∫ arcsch ( a x ) d x = x arcsch ( a x ) + 1 a arcoth 1 a 2 x 2 + 1 + C {\displaystyle \int \operatorname {arcsch} (ax)\,dx=x\operatorname {arcsch} (ax)+{\frac {1}{a}\operatorname {arcoth} {\sqrt {\frac {1}{a^{2}x^{2}+1}+C}
∫ x arcsch ( a x ) d x = x 2 arcsch ( a x ) 2 + x 2 a 1 a 2 x 2 + 1 + C {\displaystyle \int x\operatorname {arcsch} (ax)\,dx={\frac {x^{2}\operatorname {arcsch} (ax)}{2}+{\frac {x}{2a}{\sqrt {\frac {1}{a^{2}x^{2}+1}+C}
∫ x 2 arcsch ( a x ) d x = x 3 arcsch ( a x ) 3 − 1 6 a 3 arcoth 1 a 2 x 2 + 1 + x 2 6 a 1 a 2 x 2 + 1 + C {\displaystyle \int x^{2}\operatorname {arcsch} (ax)\,dx={\frac {x^{3}\operatorname {arcsch} (ax)}{3}-{\frac {1}{6a^{3}\operatorname {arcoth} {\sqrt {\frac {1}{a^{2}x^{2}+1}+{\frac {x^{2}{6a}{\sqrt {\frac {1}{a^{2}x^{2}+1}+C}
∫ x m arcsch ( a x ) d x = x m + 1 arcsch ( a x ) m + 1 + 1 a ( m + 1 ) ∫ x m − 1 1 a 2 x 2 + 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\operatorname {arcsch} (ax)\,dx={\frac {x^{m+1}\operatorname {arcsch} (ax)}{m+1}+{\frac {1}{a(m+1)}\int {\frac {x^{m-1}{\sqrt {\frac {1}{a^{2}x^{2}+1}\,dx\quad (m\neq -1)}