Plot of the Anger function J v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics, the Anger function , introduced by C. T. Anger (1855 ), is a function defined as
J ν ( z ) = 1 π ∫ 0 π cos ( ν θ − z sin θ ) d θ {\displaystyle \mathbf {J} _{\nu }(z)={\frac {1}{\pi }\int _{0}^{\pi }\cos(\nu \theta -z\sin \theta )\,d\theta } with complex parameter ν {\displaystyle \nu } and complex variable z {\displaystyle {\textit {z} .[ 1] It is closely related to the Bessel functions .
The Weber function (also known as Lommel –Weber function ), introduced by H. F. Weber (1879 ), is a closely related function defined by
E ν ( z ) = 1 π ∫ 0 π sin ( ν θ − z sin θ ) d θ {\displaystyle \mathbf {E} _{\nu }(z)={\frac {1}{\pi }\int _{0}^{\pi }\sin(\nu \theta -z\sin \theta )\,d\theta } and is closely related to Bessel functions of the second kind.
Relation between Weber and Anger functions The Anger and Weber functions are related by
Plot of the Weber function E v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D sin ( π ν ) J ν ( z ) = cos ( π ν ) E ν ( z ) − E − ν ( z ) , − sin ( π ν ) E ν ( z ) = cos ( π ν ) J ν ( z ) − J − ν ( z ) , {\displaystyle {\begin{aligned}\sin(\pi \nu )\mathbf {J} _{\nu }(z)&=\cos(\pi \nu )\mathbf {E} _{\nu }(z)-\mathbf {E} _{-\nu }(z),\\-\sin(\pi \nu )\mathbf {E} _{\nu }(z)&=\cos(\pi \nu )\mathbf {J} _{\nu }(z)-\mathbf {J} _{-\nu }(z),\end{aligned} so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions J ν are the same as Bessel functions J ν , and Weber functions can be expressed as finite linear combinations of Struve functions .
Power series expansion The Anger function has the power series expansion[ 2]
J ν ( z ) = cos π ν 2 ∑ k = 0 ∞ ( − 1 ) k z 2 k 4 k Γ ( k + ν 2 + 1 ) Γ ( k − ν 2 + 1 ) + sin π ν 2 ∑ k = 0 ∞ ( − 1 ) k z 2 k + 1 2 2 k + 1 Γ ( k + ν 2 + 3 2 ) Γ ( k − ν 2 + 3 2 ) . {\displaystyle \mathbf {J} _{\nu }(z)=\cos {\frac {\pi \nu }{2}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}{4^{k}\Gamma \left(k+{\frac {\nu }{2}+1\right)\Gamma \left(k-{\frac {\nu }{2}+1\right)}+\sin {\frac {\pi \nu }{2}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}{2^{2k+1}\Gamma \left(k+{\frac {\nu }{2}+{\frac {3}{2}\right)\Gamma \left(k-{\frac {\nu }{2}+{\frac {3}{2}\right)}.} While the Weber function has the power series expansion[ 2]
E ν ( z ) = sin π ν 2 ∑ k = 0 ∞ ( − 1 ) k z 2 k 4 k Γ ( k + ν 2 + 1 ) Γ ( k − ν 2 + 1 ) − cos π ν 2 ∑ k = 0 ∞ ( − 1 ) k z 2 k + 1 2 2 k + 1 Γ ( k + ν 2 + 3 2 ) Γ ( k − ν 2 + 3 2 ) . {\displaystyle \mathbf {E} _{\nu }(z)=\sin {\frac {\pi \nu }{2}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}{4^{k}\Gamma \left(k+{\frac {\nu }{2}+1\right)\Gamma \left(k-{\frac {\nu }{2}+1\right)}-\cos {\frac {\pi \nu }{2}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}{2^{2k+1}\Gamma \left(k+{\frac {\nu }{2}+{\frac {3}{2}\right)\Gamma \left(k-{\frac {\nu }{2}+{\frac {3}{2}\right)}.}
Differential equations The Anger and Weber functions are solutions of inhomogeneous forms of Bessel's equation
z 2 y ′ ′ + z y ′ + ( z 2 − ν 2 ) y = 0. {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y=0.} More precisely, the Anger functions satisfy the equation[ 2]
z 2 y ′ ′ + z y ′ + ( z 2 − ν 2 ) y = ( z − ν ) sin ( π ν ) π , {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y={\frac {(z-\nu )\sin(\pi \nu )}{\pi },} and the Weber functions satisfy the equation[ 2]
z 2 y ′ ′ + z y ′ + ( z 2 − ν 2 ) y = − z + ν + ( z − ν ) cos ( π ν ) π . {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y=-{\frac {z+\nu +(z-\nu )\cos(\pi \nu )}{\pi }.}
Recurrence relations The Anger function satisfies this inhomogeneous form of recurrence relation [ 2]
z J ν − 1 ( z ) + z J ν + 1 ( z ) = 2 ν J ν ( z ) − 2 sin π ν π . {\displaystyle z\mathbf {J} _{\nu -1}(z)+z\mathbf {J} _{\nu +1}(z)=2\nu \mathbf {J} _{\nu }(z)-{\frac {2\sin \pi \nu }{\pi }.} While the Weber function satisfies this inhomogeneous form of recurrence relation [ 2]
z E ν − 1 ( z ) + z E ν + 1 ( z ) = 2 ν E ν ( z ) − 2 ( 1 − cos π ν ) π . {\displaystyle z\mathbf {E} _{\nu -1}(z)+z\mathbf {E} _{\nu +1}(z)=2\nu \mathbf {E} _{\nu }(z)-{\frac {2(1-\cos \pi \nu )}{\pi }.}
Delay differential equations The Anger and Weber functions satisfy these homogeneous forms of delay differential equations [ 2]
J ν − 1 ( z ) − J ν + 1 ( z ) = 2 ∂ ∂ z J ν ( z ) , {\displaystyle \mathbf {J} _{\nu -1}(z)-\mathbf {J} _{\nu +1}(z)=2{\dfrac {\partial }{\partial z}\mathbf {J} _{\nu }(z),} E ν − 1 ( z ) − E ν + 1 ( z ) = 2 ∂ ∂ z E ν ( z ) . {\displaystyle \mathbf {E} _{\nu -1}(z)-\mathbf {E} _{\nu +1}(z)=2{\dfrac {\partial }{\partial z}\mathbf {E} _{\nu }(z).} The Anger and Weber functions also satisfy these inhomogeneous forms of delay differential equations [ 2]
z ∂ ∂ z J ν ( z ) ± ν J ν ( z ) = ± z J ν ∓ 1 ( z ) ± sin π ν π , {\displaystyle z{\dfrac {\partial }{\partial z}\mathbf {J} _{\nu }(z)\pm \nu \mathbf {J} _{\nu }(z)=\pm z\mathbf {J} _{\nu \mp 1}(z)\pm {\frac {\sin \pi \nu }{\pi },} z ∂ ∂ z E ν ( z ) ± ν E ν ( z ) = ± z E ν ∓ 1 ( z ) ± 1 − cos π ν π . {\displaystyle z{\dfrac {\partial }{\partial z}\mathbf {E} _{\nu }(z)\pm \nu \mathbf {E} _{\nu }(z)=\pm z\mathbf {E} _{\nu \mp 1}(z)\pm {\frac {1-\cos \pi \nu }{\pi }.}
References ^ Prudnikov, A.P. (2001) [1994], "Anger function" , Encyclopedia of Mathematics , EMS Press ^ a b c d e f g h Paris, R. B. (2010), "Anger-Weber Functions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 . Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 12" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 498. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 . C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig, 5 (1855) pp. 1–29 Prudnikov, A.P. (2001) [1994], "Weber function" , Encyclopedia of Mathematics , EMS Press G.N. Watson , "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952) H.F. Weber, Zurich Vierteljahresschrift, 24 (1879) pp. 33–76