Meixner–Pollaczek polynomials

In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P(λ)
n
(x,φ) introduced by Meixner (1934), which up to elementary changes of variables are the same as the Pollaczek polynomials Pλ
n
(x,a,b) rediscovered by Pollaczek (1949) in the case λ=1/2, and later generalized by him.

They are defined by

Examples

The first few Meixner–Pollaczek polynomials are

Properties

Orthogonality

The Meixner–Pollaczek polynomials Pm(λ)(x;φ) are orthogonal on the real line with respect to the weight function

and the orthogonality relation is given by[1]

Recurrence relation

The sequence of Meixner–Pollaczek polynomials satisfies the recurrence relation[2]

Rodrigues formula

The Meixner–Pollaczek polynomials are given by the Rodrigues-like formula[3]

where w(x;λ,φ) is the weight function given above.

Generating function

The Meixner–Pollaczek polynomials have the generating function[4]

See also

References

  1. ^ Koekoek, Lesky, & Swarttouw (2010), p. 213.
  2. ^ Koekoek, Lesky, & Swarttouw (2010), p. 213.
  3. ^ Koekoek, Lesky, & Swarttouw (2010), p. 214.
  4. ^ Koekoek, Lesky, & Swarttouw (2010), p. 215.