U-quadratic distribution
U-quadratic
Probability density function
Parameters
a
:
a
∈
(
−
∞
,
∞
)
{\displaystyle a:~a\in (-\infty ,\infty )}
b
:
b
∈
(
a
,
∞
)
{\displaystyle b:~b\in (a,\infty )}
or
α
:
α
∈
(
0
,
∞
)
{\displaystyle \alpha :~\alpha \in (0,\infty )}
β
:
β
∈
(
−
∞
,
∞
)
,
{\displaystyle \beta :~\beta \in (-\infty ,\infty ),}
Support
x
∈
[
a
,
b
]
{\displaystyle x\in [a,b]\!}
PDF
α
(
x
−
β
)
2
{\displaystyle \alpha \left(x-\beta \right)^{2}
CDF
α
3
(
(
x
−
β
)
3
+
(
β
−
a
)
3
)
{\displaystyle {\alpha \over 3}\left((x-\beta )^{3}+(\beta -a)^{3}\right)}
Mean
a
+
b
2
{\displaystyle {a+b \over 2}
Median
a
+
b
2
{\displaystyle {a+b \over 2}
Mode
a
and
b
{\displaystyle a{\text{ and }b}
Variance
3
20
(
b
−
a
)
2
{\displaystyle {3 \over 20}(b-a)^{2}
Skewness
0
{\displaystyle 0}
Excess kurtosis
3
112
(
b
−
a
)
4
{\displaystyle {3 \over 112}(b-a)^{4}
Entropy
TBD MGF
See text CF
See text
In probability theory and statistics , the U-quadratic distribution is a continuous probability distribution defined by a unique convex quadratic function with lower limit a and upper limit b .
f
(
x
|
a
,
b
,
α
,
β
)
=
α
(
x
−
β
)
2
,
for
x
∈
[
a
,
b
]
.
{\displaystyle f(x|a,b,\alpha ,\beta )=\alpha \left(x-\beta \right)^{2},\quad {\text{for }x\in [a,b].}
Parameter relations
This distribution has effectively only two parameters a , b , as the other two are explicit functions of the support defined by the former two parameters:
β
=
b
+
a
2
{\displaystyle \beta ={b+a \over 2}
(gravitational balance center, offset), and
α
=
12
(
b
−
a
)
3
{\displaystyle \alpha ={12 \over \left(b-a\right)^{3}
(vertical scale).
One can introduce a vertically inverted (
∩
{\displaystyle \cap }
)-quadratic distribution in analogous fashion. That inverted distribution is also closely related to the Epanechnikov distribution .
Applications
This distribution is a useful model for symmetric bimodal processes. Other continuous distributions allow more flexibility, in terms of relaxing the symmetry and the quadratic shape of the density function, which are enforced in the U-quadratic distribution – e.g., beta distribution and gamma distribution .
Moment generating function
M
X
(
t
)
=
−
3
(
e
a
t
(
4
+
(
a
2
+
2
a
(
−
2
+
b
)
+
b
2
)
t
)
−
e
b
t
(
4
+
(
−
4
b
+
(
a
+
b
)
2
)
t
)
)
(
a
−
b
)
3
t
2
{\displaystyle M_{X}(t)={-3\left(e^{at}(4+(a^{2}+2a(-2+b)+b^{2})t)-e^{bt}(4+(-4b+(a+b)^{2})t)\right) \over (a-b)^{3}t^{2}
Characteristic function
ϕ
X
(
t
)
=
3
i
(
e
i
a
t
e
i
b
t
(
4
i
−
(
−
4
b
+
(
a
+
b
)
2
)
t
)
)
(
a
−
b
)
3
t
2
{\displaystyle \phi _{X}(t)={3i\left(e^{iate^{ibt}(4i-(-4b+(a+b)^{2})t)\right) \over (a-b)^{3}t^{2}
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families
The article is a derivative under the Creative Commons Attribution-ShareAlike License .
A link to the original article can be found here and attribution parties here
By using this site, you agree to the Terms of Use . Gpedia ® is a registered trademark of the Cyberajah Pty Ltd