Mengi
Mengi er í stærðfræði safn staka[1] (einnig kallað íbúar),[1] sem til samans mynda eina heild. Mengjahugtakið er eitt af grunnhugtökum í nútíma stærðfræði. Mengjafræði varð til við lok 19. aldar og er stærðfræðingurinn Georg Cantor upphafsmaður hennar.
Stök mengja
Stök mengis geta verið hvað sem er: tölur, fólk, bókstafir, önnur mengi o.s.frv. Mengi eru oftast táknuð með stórum bókstöfum eins og A,B og C. Tvö mengi A og B eru sögð jöfn, táknað A=B, ef þau innihalda sömu stök. Mengi getur verið lokað eða opið, bæði lokað og opið eða hvorki lokað né opið. Talnamengi hafa eingöngu tölur sem stök, en tómamengið hefur ekkert stak, táknað ∅. Líkt og núll í talnafræði, gegnir tómamengið mikilvægu hlutverki í mengjafræði.
Skilgreining mengja
Mengjaskilgreiningarritháttur er sá ritháttur sem notaður er til að skilgreina mengi. Mengi má lýsa með orðum, t.d.:
- A = fyrstu þrjár náttúrulegu tölurnar, stærri en núll
- B = litirnir gulur, rauður, grænn og blár
Önnur aðferð til að lýsa mengjum er að telja upp stök þess innan slaufusviga, t.d.:
- C = {1,2,3}
- D = {blár, grænn, gulur, rauður}
Jafnvel þótt að lýsa megi tveimur mengjum á mismunandi vegu, geta þau verið jöfn sem mengi. Til dæmis er A=C og B=D í dæmunum að ofan, því stök þeirra eru þau sömu.
Það breytir engu í hvaða röð eða hversu oft stök eru talin upp í skilgreiningu á mengi. Til dæmis er {2,4} , {4,2} og {2,2,4,2} eitt og sama mengið þar sem stökin eru þau sömu.
Fjöldi staka í mengi
Í dæmunum að ofan er ljóst hver fjöldi staka í menginu er, A inniheldur 3 stök og B fjögur. Mengi geta haft óendanlegan fjölda staka, en náttúrulegu tölurnar eru dæmi um óendanlegt, en teljalegt mengi. Fjöldatölur segja til um fjölda staka í endanlegum mengjum, en eru stærðfræðilegur mælikvarði á fjölda staka í óendanlegum mengjum.