Questa pagina contiene una tavola di integrali indefiniti di funzioni trigonometriche.
- Per altri integrali vedi Integrale § Tavole di integrali.
In questa pagina si assume che
sia una costante diversa da 0.
Integrali di funzioni trigonometriche contenenti solo il seno
![{\displaystyle \int \sin(cx)\;\mathrm {d} x=-{\frac {\cos(cx)}{c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/872c3ae127f9b7e38ae724fd090dadfb970a674c)
![{\displaystyle \int \sin ^{2}x\;\mathrm {d} x={\frac {1}{2}(x-\sin x\cos x)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7440abddc7d4b9cf42660987aa906402265941f7)
![{\displaystyle \int \sin ^{n}(cx)\;\mathrm {d} x=-{\frac {\sin ^{n-1}(cx)\cos(cx)}{nc}+{\frac {n-1}{n}\int \sin ^{n-2}(cx)\;\mathrm {d} x\qquad ({\text{per }n>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/896f1a1a39f5a35ba5e16b9969d08e8de49fe533)
![{\displaystyle \int x\sin(cx)\;\mathrm {d} x={\frac {\sin(cx)}{c^{2}-{\frac {x\cos(cx)}{c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a9dadb99dd4fe14b7199a93a804c5a82d96ba2b9)
![{\displaystyle \int x^{n}\sin(cx)\;\mathrm {d} x=-{\frac {x^{n}{c}\cos(cx)+{\frac {n}{c}\int x^{n-1}\cos(cx)\;\mathrm {d} x\qquad ({\text{per }n>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/453329f9961d2f2038bf17f331662378e4340e77)
![{\displaystyle \int {\frac {\sin(cx)}{x}\mathrm {d} x=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}{(2i+1)\cdot (2i+1)!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/34c4241fa3c49166af56b7475769be4a2fcd4883)
![{\displaystyle \int {\frac {\sin(cx)}{x^{n}\mathrm {d} x=-{\frac {\sin cx}{(n-1)x^{n-1}+{\frac {c}{n-1}\int {\frac {\cos(cx)}{x^{n-1}\mathrm {d} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5cb201250e3f4a0d0c45e3dac86b6fc7abc2d271)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin(cx)}={\frac {1}{c}\ln \left|\tan {\frac {cx}{2}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72e7f702f3ef78587c423000392dff964d06e832)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}(cx)}={\frac {\cos(cx)}{c(1-n)\sin ^{n-1}(cx)}+{\frac {n-2}{n-1}\int {\frac {\mathrm {d} x}{\sin ^{n-2}cx}\qquad ({\text{per }n>1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6b09fcd5a48edcaee85f4cd368714cec769b8458)
![{\displaystyle \int {\frac {\mathrm {d} x}{1\pm \sin(cx)}={\frac {1}{c}\tan \left({\frac {cx}{2}\mp {\frac {\pi }{4}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/17ae104157cb2bf3731bcafa043f49194d6cc610)
![{\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\sin(cx)}={\frac {x}{c}\tan \left({\frac {cx}{2}-{\frac {\pi }{4}\right)+{\frac {2}{c^{2}\ln \left|\cos \left({\frac {cx}{2}-{\frac {\pi }{4}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bd4a59258cb48b4059ea197bff875120c2fe72ac)
![{\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\sin cx}={\frac {x}{c}\cot \left({\frac {\pi }{4}-{\frac {cx}{2}\right)+{\frac {2}{c^{2}\ln \left|\sin \left({\frac {\pi }{4}-{\frac {cx}{2}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/066cedeed5f1da2895284b5b15c72bc45bc457e8)
![{\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{1\pm \sin cx}=\pm x+{\frac {1}{c}\tan \left({\frac {\pi }{4}\mp {\frac {cx}{2}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/345a0104188103fe09d98c5cfde3292dc096bfc1)
![{\displaystyle \int \sin c_{1}x\sin c_{2}x\;\mathrm {d} x={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}\qquad ({\text{per }|c_{1}|\neq |c_{2}|)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4c948103a4ff979f5155dbeac4c985e27b79d5b)
Integrali di funzioni trigonometriche contenenti solo il coseno
Lo stesso argomento in dettaglio: Coseno.
![{\displaystyle \int \cos(cx)\;\mathrm {d} x={\frac {\sin(cx)}{c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8d1ba7cbc97e68023a432026a8c944414950c469)
![{\displaystyle \int \cos ^{n}(cx)\;\mathrm {d} x={\frac {\cos ^{n-1}(cx)\sin(cx)}{nc}+{\frac {n-1}{n}\int \cos ^{n-2}(cx)\;\mathrm {d} x\qquad ({\text{per }n>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b97d924e80ae16c68d4800d10a6abd8d5585c665)
![{\displaystyle \int x\cos(cx)\;\mathrm {d} x={\frac {\cos(cx)}{c^{2}+{\frac {x\sin(cx)}{c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/185bf18483f69af63df953c3fb128cb074fb3203)
![{\displaystyle \int x^{n}\cos(cx)\;\mathrm {d} x={\frac {x^{n}\sin(cx)}{c}-{\frac {n}{c}\int x^{n-1}\sin(cx)\;\mathrm {d} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d34dc951467f940177f9b84544839d247d46079)
![{\displaystyle \int {\frac {\cos(cx)}{x}\mathrm {d} x=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}{2i\cdot (2i)!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f0f44e37591d84f03e3a79f68d5d7b1bf5663657)
![{\displaystyle \int {\frac {\cos(cx)}{x^{n}\mathrm {d} x=-{\frac {\cos(cx)}{(n-1)x^{n-1}-{\frac {c}{n-1}\int {\frac {\sin(cx)}{x^{n-1}\mathrm {d} x\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2e3be2ed97e47d69e323fb6e4c009ed7488d456)
![{\displaystyle \int {\frac {\mathrm {d} x}{\cos(cx)}={\frac {1}{c}\ln \left|\tan \left({\frac {cx}{2}+{\frac {\pi }{4}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a54b6c99dae65b807f439975b8c7ebdb3b3c6fde)
![{\displaystyle \int {\frac {\mathrm {d} x}{\cos ^{n}(cx)}={\frac {\sin(cx)}{c(n-1)\cos ^{n-1}(cx)}+{\frac {n-2}{n-1}\int {\frac {\mathrm {d} x}{\cos ^{n-2}(cx)}\qquad ({\text{per }n>1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d77bac2c40c9983fa34a5bab1bdccc6bfe47d561)
![{\displaystyle \int {\frac {\mathrm {d} x}{1+\cos(cx)}={\frac {1}{c}\tan {\frac {cx}{2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/079c9d22929d9b437ff23ed3b3de4fe029b2a28c)
![{\displaystyle \int {\frac {\mathrm {d} x}{1-\cos(cx)}=-{\frac {1}{c}\cot {\frac {cx}{2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/576381675485a00e755231e0e0caf11b28e05b56)
![{\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\cos(cx)}={\frac {x}{c}\tan({cx}/{2})+{\frac {2}{c^{2}\ln \left|\cos {\frac {cx}{2}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b80dfa1f9c5651d88e6a478ac5109864f0d14a8a)
![{\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\cos(cx)}=-{\frac {x}{x}\cot({cx}/{2})+{\frac {2}{c^{2}\ln \left|\sin {\frac {cx}{2}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/75bf1332909574e7001c3a4d02bf0dfb008cd06e)
![{\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{1+\cos(cx)}=x-{\frac {1}{c}\tan {\frac {cx}{2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7bd4022f361118eb50d35d9dd49cc31adbe40566)
![{\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{1-\cos(cx)}=-x-{\frac {1}{c}\cot {\frac {cx}{2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/167b9ed8d59c2e6df3ba2f7053ac58ebc0e7b944)
![{\displaystyle \int \cos c_{1}x\cos c_{2}x\;\mathrm {d} x={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}\qquad ({\text{per }|c_{1}|\neq |c_{2}|)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a86563a8883d4d2d5acd75ab4c2e784dd7996e0a)
Integrali di funzioni trigonometriche contenenti solo tangente
![{\displaystyle \int \tan cx\;\mathrm {d} x=-{\frac {1}{c}\ln |\cos cx|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/78dfbffe5680e8df7694d89e7559a7fd33006045)
![{\displaystyle \int \tan ^{n}cx\;\mathrm {d} x={\frac {1}{c(n-1)}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;\mathrm {d} x\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67e93d425943ad2759ab31b4886ea6cfc734a340)
![{\displaystyle \int {\frac {\mathrm {d} x}{\tan cx+1}={\frac {x}{2}+{\frac {1}{2c}\ln |\sin cx+\cos cx|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24cd43d5c827cf304f6310b863c4ee94266093ba)
![{\displaystyle \int {\frac {\mathrm {d} x}{\tan cx-1}=-{\frac {x}{2}+{\frac {1}{2c}\ln |\sin cx-\cos cx|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/485ac6b9454157339b1fa3fcc52cb0c2c8ac507f)
![{\displaystyle \int {\frac {\tan cx\;\mathrm {d} x}{\tan cx+1}={\frac {x}{2}-{\frac {1}{2c}\ln |\sin cx+\cos cx|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46af7a1d95569936e96c980e0b6112ce65230c14)
![{\displaystyle \int {\frac {\tan cx\;\mathrm {d} x}{\tan cx-1}={\frac {x}{2}+{\frac {1}{2c}\ln |\sin cx-\cos cx|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e1e97f863742fc800668a0f2fe8b9110143b2d31)
Integrali di funzioni trigonometriche contenenti solo secante
![{\displaystyle \int \sec {cx}\,\mathrm {d} x={\frac {1}{c}\ln {\left|\sec {cx}+\tan {cx}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa34c3b1c5c3c49d16b17a8b1222434dbead9b0e)
![{\displaystyle \int \sec ^{n}{cx}\,\mathrm {d} x={\frac {\sec ^{n-1}{cx}\sin {cx}{c(n-1)}+{\frac {n-2}{n-1}\int \sec ^{n-2}{cx}\,\mathrm {d} x\qquad {\text{per }n\neq 1,c\neq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/18278360ea87323c25808017f5e53ff8be714150)
Integrali di funzioni trigonometriche contenenti solo cosecante
![{\displaystyle \int \csc {cx}\,\mathrm {d} x=-{\frac {1}{c}\ln {\left|\csc {cx}+\cot {cx}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a84d61caf03187dec24832ee06d25fd033a39282)
![{\displaystyle \int \csc ^{n}{cx}\,\mathrm {d} x=-{\frac {\csc ^{n-1}{cx}\cos {cx}{c(n-1)}+{\frac {n-2}{n-1}\int \csc ^{n-2}{cx}\,\mathrm {d} x\qquad {\text{per }n\neq 1,c\neq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c04252ebcb03c1a555785ea513627ec432dd607)
Integrali di funzioni trigonometriche contenenti solo cotangente
![{\displaystyle \int \cot cx\;\mathrm {d} x={\frac {1}{c}\ln |\sin cx|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d6c70d7e8d001d32f21daa957a3ef461a190c1f)
![{\displaystyle \int \cot ^{n}cx\;\mathrm {d} x=-{\frac {1}{c(n-1)}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;\mathrm {d} x\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba86ba95810878f3337faeab9d206cb4aa5952b)
![{\displaystyle \int {\frac {\mathrm {d} x}{1+\cot cx}=\int {\frac {\tan cx\;\mathrm {d} x}{\tan cx+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8902062caae4efe8791a2873d0a55997af70c741)
![{\displaystyle \int {\frac {\mathrm {d} x}{1-\cot cx}=\int {\frac {\tan cx\;\mathrm {d} x}{\tan cx-1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf20cd9853de882a29c090ae5e11c842332532ea)
Integrali di funzioni trigonometriche contenenti seno e coseno
![{\displaystyle \int {\frac {\mathrm {d} x}{\cos cx\pm \sin cx}={\frac {1}{c{\sqrt {2}\ln \left|\tan \left({\frac {cx}{2}\pm {\frac {\pi }{8}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9e9bb59c73be16e7649fc7298fec9fa90c6c9b4)
![{\displaystyle \int {\frac {\mathrm {d} x}{(\cos cx\pm \sin cx)^{2}={\frac {1}{2c}\tan \left(cx\mp {\frac {\pi }{4}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67e591bc6b88e59d3f20233ebc4a91e85b99d8fe)
![{\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\cos cx+\sin cx}={\frac {x}{2}+{\frac {1}{2c}\ln \left|\sin cx+\cos cx\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d88e236284f9aa982a94ad4329e47a9f9a21a0d)
![{\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\cos cx-\sin cx}={\frac {x}{2}-{\frac {1}{2c}\ln \left|\sin cx-\cos cx\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/11192b17341aff25228995ba3d566c7845245fff)
![{\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos cx+\sin cx}={\frac {x}{2}-{\frac {1}{2c}\ln \left|\sin cx+\cos cx\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4929d43e0536d95e0bc68fcd9b95287f30cb6cc3)
![{\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos cx-\sin cx}=-{\frac {x}{2}-{\frac {1}{2c}\ln \left|\sin cx-\cos cx\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/509b66e52e7d12a246d27f74720cf49eadc675ae)
![{\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\sin cx(1+\cos cx)}=-{\frac {1}{4c}\tan ^{2}{\frac {cx}{2}+{\frac {1}{2c}\ln \left|\tan {\frac {cx}{2}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f57f1bdbaafede34a4bedd659e1cf06abc83371c)
![{\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\sin cx(1-\cos cx)}=-{\frac {1}{4c}\cot ^{2}{\frac {cx}{2}-{\frac {1}{2c}\ln \left|\tan {\frac {cx}{2}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/157e8712a614d072daca7a1df1b3f8473a960553)
![{\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos cx(1+\sin cx)}={\frac {1}{4c}\cot ^{2}\left({\frac {cx}{2}+{\frac {\pi }{4}\right)+{\frac {1}{2c}\ln \left|\tan \left({\frac {cx}{2}+{\frac {\pi }{4}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3f9eac5cfbab68440ac2c6330c0a38dff796fa5f)
![{\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos cx(1-\sin cx)}={\frac {1}{4c}\tan ^{2}\left({\frac {cx}{2}+{\frac {\pi }{4}\right)-{\frac {1}{2c}\ln \left|\tan \left({\frac {cx}{2}+{\frac {\pi }{4}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/415c9525b6827d028a257bb7f1034256551b95df)
![{\displaystyle \int \sin cx\cos cx\;\mathrm {d} x={\frac {-1}{2c}\cos ^{2}cx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6643e19304d7a2267740880611f7e418d0afa69d)
![{\displaystyle \int \sin c_{1}x\cos c_{2}x\;\mathrm {d} x=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}\qquad ({\text{per }|c_{1}|\neq |c_{2}|)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0f2c92ab26446adb1f71aceb8e3abce6c447204)
![{\displaystyle \int \sin ^{n}cx\cos cx\;\mathrm {d} x={\frac {1}{c(n+1)}\sin ^{n+1}cx\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ebc9a9d583055256f3c15ad5861a93e2b28b6a90)
![{\displaystyle \int \sin cx\cos ^{n}cx\;\mathrm {d} x=-{\frac {1}{c(n+1)}\cos ^{n+1}cx\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/434e692a6b882ed8c0575a7b5bb63dec0604c3c4)
![{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;\mathrm {d} x=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}+{\frac {n-1}{n+m}\int \sin ^{n-2}cx\cos ^{m}cx\;\mathrm {d} x\qquad ({\text{per }m,n>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d670c288811f1c45ece980cc21ceeefdfcd12c3)
- anche:
![{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;\mathrm {d} x={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}+{\frac {m-1}{n+m}\int \sin ^{n}cx\cos ^{m-2}cx\;\mathrm {d} x\qquad ({\text{per }m,n>0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c041ce2b8389010e3d69c158dd009d2236385064)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin cx\cos cx}={\frac {1}{c}\ln \left|\tan cx\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8fa054f098a849d074972d08cd27b17965da9a18)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin cx\cos ^{n}cx}={\frac {1}{c(n-1)\cos ^{n-1}cx}+\int {\frac {\mathrm {d} x}{\sin cx\cos ^{n-2}cx}\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/436a1ae9e405f4b5956fa86204eb5efb7e6a81a2)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}cx\cos cx}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}cx\cos cx}\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2554b40521204f76ea7bda74d2bc2a443c4e1686)
![{\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos ^{n}cx}={\frac {1}{c(n-1)\cos ^{n-1}cx}\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e256979c6c2d3d4ef1564582ae9f3c585947bd83)
![{\displaystyle \int {\frac {\sin ^{2}cx\;\mathrm {d} x}{\cos cx}=-{\frac {1}{c}\sin cx+{\frac {1}{c}\ln \left|\tan \left({\frac {\pi }{4}+{\frac {cx}{2}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/febee761dc9b032ca89846bba13280916bc50843)
![{\displaystyle \int {\frac {\sin ^{2}cx\;\mathrm {d} x}{\cos ^{n}cx}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}-{\frac {1}{n-1}\int {\frac {\mathrm {d} x}{\cos ^{n-2}cx}\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dd923b31441b6e8d117aee93442f57c32601ed82)
![{\displaystyle \int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos cx}=-{\frac {\sin ^{n-1}cx}{c(n-1)}+\int {\frac {\sin ^{n-2}cx\;\mathrm {d} x}{\cos cx}\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a7665a8327ada98c4e31d664deab8c6820e76b2)
![{\displaystyle \int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos ^{m}cx}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}-{\frac {n-m+2}{m-1}\int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos ^{m-2}cx}\qquad ({\text{per }m\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8242539a248d40ac920becdd6cdd5c5b072edfe)
- anche:
![{\displaystyle \int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos ^{m}cx}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}+{\frac {n-1}{n-m}\int {\frac {\sin ^{n-2}cx\;\mathrm {d} x}{\cos ^{m}cx}\qquad {\text{per }m\neq n)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/592668af09473155601561e0e8f63e669c80c3ea)
- anche:
![{\displaystyle \int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos ^{m}cx}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}-{\frac {n-1}{m-1}\int {\frac {\sin ^{n-1}cx\;\mathrm {d} x}{\cos ^{m-2}cx}\qquad ({\text{per }m\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d4d793a240af3160272433d4d018bf2b5f6127f2)
![{\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\sin ^{n}cx}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c18f79f545ba306e30d094d5366efe6347c8c94)
![{\displaystyle \int {\frac {\cos ^{2}cx\;\mathrm {d} x}{\sin cx}={\frac {1}{c}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}\right|\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da388a96c63f269c2d2e373f3ef1723277d4a498)
![{\displaystyle \int {\frac {\cos ^{2}cx\;\mathrm {d} x}{\sin ^{n}cx}=-{\frac {1}{n-1}\left({\frac {\cos cx}{\sin ^{n-1}cx}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}cx}\right)\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8546e0cd06ab0c8e1976f54322c0b133e486dec2)
![{\displaystyle \int {\frac {\cos ^{n}cx\;\mathrm {d} x}{\sin ^{m}cx}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}-{\frac {n-m-2}{m-1}\int {\frac {\cos ^{n}cx\;\mathrm {d} x}{\sin ^{m-2}cx}\qquad ({\text{per }m\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2cea79da97a2f42d5adb164bd15a3bb85617d597)
- anche:
![{\displaystyle \int {\frac {\cos ^{n}cx\;\mathrm {d} x}{\sin ^{m}cx}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}+{\frac {n-1}{n-m}\int {\frac {\cos ^{n-2}cx\;\mathrm {d} x}{\sin ^{m}cx}\qquad ({\text{per }m\neq n)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f7a2b88dc10af391be192edde48b4a18804eb89)
- anche:
![{\displaystyle \int {\frac {\cos ^{n}cx\;\mathrm {d} x}{\sin ^{m}cx}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}-{\frac {n-1}{m-1}\int {\frac {\cos ^{n-2}cx\;\mathrm {d} x}{\sin ^{m-2}cx}\qquad ({\text{per }m\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0732e43bd9a8ad5eec3c06cbc618c52cfed3678b)
Integrali di funzioni trigonometriche contenenti seno e tangente
![{\displaystyle \int \sin(cx)\tan(cx)\;\mathrm {d} x={\frac {\ln |\sec(cx)+\tan(cx)|-\sin(cx)}{c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f251807ed9e13c432c9b1aa6be07c215ee39d75d)
![{\displaystyle \int {\frac {\tan ^{n}(cx)}{\sin ^{2}(cx)}\;\mathrm {d} x={\frac {\tan ^{n-1}(cx)}{c(n-1)}\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f28b189d212bc94452d77f808f5960052e9898c7)
Integrali di funzioni trigonometriche contenenti coseno e tangente
![{\displaystyle \int {\frac {\tan ^{n}(cx)}{\cos ^{2}(cx)}\;\mathrm {d} x={\frac {\tan ^{n+1}(cx)}{c(n+1)}\qquad ({\text{per }n\neq -1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0aa90bae88788970438a63b14d22069a0ecf5eda)
Integrali di funzioni trigonometriche contenenti seno e cotangente
![{\displaystyle \int {\frac {\cot ^{n}(cx)}{\sin ^{2}(cx)}\;\mathrm {d} x=-{\frac {\cot ^{n+1}(cx)}{c(n+1)}\qquad ({\text{per }n\neq -1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fec64a428e173102a634100140d7cc194cbc5bd1)
Integrali di funzioni trigonometriche contenenti coseno e cotangente
![{\displaystyle \int {\frac {\cot ^{n}(cx)}{\cos ^{2}(cx)}\;\mathrm {d} x={\frac {\tan ^{1-n}(cx)}{c(1-n)}\qquad ({\text{per }n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51be69f93883394cbe6bc86bc3113302e31ca2a5)
Integrali di funzioni trigonometriche contenenti tangente e cotangente
![{\displaystyle \int {\frac {\tan ^{m}(cx)}{\cot ^{n}(cx)}\;\mathrm {d} x={\frac {\tan ^{m+n-1}(cx)}{c(m+n-1)}-\int {\frac {\tan ^{m-2}(cx)}{\cot ^{n}(cx)}\;\mathrm {d} x\qquad ({\text{per }m+n\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8c84833c0f99cbb388215ccac9dc79de756b37e2)
Bibliografia
- Murray R. Spiegel, Manuale di matematica, Etas Libri, 1974, pp. 75-82.