스피어먼 상관 계수
통계에서 스피어먼 상관 계수는 두 변수의 순위 사이의 통계적 의존성을 측정하는 비모수적인 척도이다. 이는 두 변수의 관계가 단조함수(單調函數,monotonic function)를 사용하여 얼마나 잘 설명될 수 있는지를 평가한다.
두 변수 간의 스피어먼 상관 계수는 두 변수의 순위 값 사이의 피어슨 상관 계수와 같다. 따라서 칼 피어슨의 상관 계수가 두 변수 사이의 선형 관계를 평가하는 반면 찰스 스피어먼의 상관 계수는 단조 적 관계 (선형인지 여부는 아님)를 평가한다. 중복 데이터 값이 없으면 각 변수가 다른 변수의 완벽한 단조 함수 일 때 +1 또는 -1의 완벽한 스피어만 상관 관계가 발생한다.
정의 및 계산
스피어먼 상관 계수는 순위가 매겨진 변수 간의 피어슨 상관 계수 로 정의된다.[1] 따라서 통계적 계산에서 순서척도가 적용되는 상관분석에서는 스피어먼 상관 계수가 사용되며 간격척도가 적용되는 변수들 간의 분석에서는 피어슨 상관 계수가 사용된다.
같이 보기
각주
- ↑ Myers, Jerome L.; Well, Arnold D. (2003). 《Research Design and Statistical Analysis》 2판. Lawrence Erlbaum. 508쪽. ISBN 978-0-8058-4037-7.