Globālā pozicionēšanas sistēma
Globālā pozicionēšanas sistēma (GPS; angļu: Global Positioning System) — ASV pavadoņu navigācijas sistēma. Navigācijas pavadoņi pārraida radio signālus, kurus uztver GPS uztvērēji, lai noteiktu objekta atrašanās vietu, pārvietošanās ātrumu un virzienu. GPS sākotnēji bija paredzēta militārajai izmantošanai, bet mūsdienās ir izmantojama (ar dažiem ierobežojumiem) civilajiem mērķiem.
Globālo pozicionēšanas sistēmu izstrādāja ASV Aizsardzības departaments, sistēmas sākotnējais nosaukums bija NAVSTAR GPS (Navigation Signal Timing and Ranging Global Positioning System); to uztur ASV Kosmosa spēki.
Darbības princips
GPS uztvērējs aprēķina objekta koordinātas, nosakot attālumu starp uztvērēju un četriem (var pieņemt, ka viens no tiem atrodas zemes centrā), vai vairāk GPS pavadoņiem, izmērot laiku, kāds pagājis starp signālu noraidīšanām no katra pavadoņa un to saņemšanām uztvērējā. Savukārt kopā ar signālu no pavadoņa tiek pārraidītas attiecīgā pavadoņa koordinātas. Ņemot vērā radiosignāla izplatīšanās laiku ir nosakāma distance no šā pavadoņa S=v*t. Katrs pavadonis šādi dod lodveida pozīcijas virsmu ap sevi. Divi pavadoņi jau dod riņķa līniju, kur viņu dažāda diametra "burbuļi" šķērso viens otru. Trešā pavadoņa "burbulis" šķērso šo riņķa līniju divos punktos. Ceturtais pavadonis dod pēdējo izvēli — tā "burbulis" šķērso vienu no šiem diviem atlikušajiem punktiem. Var pieņemt, ka šis ceturtais pavadonis atrodas zemes centrā, tad šī iedomātā pavadoņa pozīcijas virsma tiek aizstāta ar jūras virsmu, kas formas ziņā tuvu lodei ap Zemes centru. Līdz ar to, pieņemot, ka uztvērējs atrodas tuvu zemes virsmai, nepieciešami tikai trīs pavadoņi pozīcijas noteikšanai. GPS uztvērējos tas parasti tiek apzīmēts ar funkciju "3D/2D mode", kas var arī nebūt, ja uztvērējs nav domāts jūras lietošanai.
Pozīcijas precizitātes samazināšanās (PDOP)
Pavadoņu, kurus izmanto vietas noteikšanā, izvietojums debesīs ir svarīgs aprēķinātās vietas precizitātei. Ja pavadoņi būtu izvietoti ļoti tuvu viens otram, tad arī izmērītie attālumi līdz tiem būtu ļoti līdzīgi, bet nelielas kļūdas izmērītajos attālumos radītu lielas kļūdas atrašanās vietas aprēķinā.[1] Tas ir līdzīgi kļūdām nosakot kuģa vietu pēc diviem vizuāliem peilējumiem. Kļūdas lielumu ietekmē abu īsto peilējuma līniju krustošanās leņķis. Ja peilējumu līnijas krustojas zem ļoti šaura vai ļoti plata leņķa, kļūda kuģa vietā ir liela. Ja peilējumu līnijas krustojas zem 90° leņķa, kļūda ir maza.[2] Ģeometrijas iespaidu uz kopējām kļūdām vietas noteikšanā ērti aprakstīt izmantojot pozīcijas precizitātes samazināšanās (Position Dilution of Precision (PDOP) - angļu val.) jēdzienu.
Pozīcijas precizitātes samazināšanās (PDOP) ir cipars, kurš ir apgriezti proporcionāls daudzstūra piramīdas tilpumam, kuru veido vienu vienību lieli vektori vērsti virzienos no novērotāja uz pavadoņiem, kurus izmanto vietas noteikšanai. Maksimālajam piramīdas tilpumam atbilst cipars 1, bet zemākam piramīdas tilpumam jeb sliktākai pavadoņu ģeometrijai, atbilst lielāki cipari.
Ja tiek dota GPS pozīcijas precizitāte strādājot ar optimāli izvietotiem pavadoņiem, šī precizitāte ir jāpareizina ar pozīcijas precizitātes samazināšanās vērtību, lai iegūtu iespējamo precizitāti strādājot citā pavadoņu izkārtojumā. Piemēram, ja GPS precizitāte ir 10 metri ar PDOP vērtību 1, tad precizitāte būs 30 metri pie PDOP vērtības 3. Pavadoņnavigācijā PDOP vērtība zem 4 tiek uzskatīta par ļoti labu, līdz 8 par pieņemamu, bet virs 9 par sliktu.
Tiek izmantoti arī citi pozīcijas precizitātes samazināšanās jēdzieni. Horizontālā precizitātes samazināšanās (Horizontal Dilution of Precision (HDOP) - angļu val.) ir trīs dimensiju pozīcijas precizitātes samazināšanās (PDOP) efekta mērījums tikai attiecībā pret Zemes virsmu jeb PDOP horizontālā komponente. Vertikālā precizitātes samazināšanās (Vertical Dilution of Precision (VDOP) - angļu val.) ir PDOP vertikālā komponente.[3]
Pseidoattālums un pulksteņu nobīdes
Iepriekš apskatītais darbības princips ir izmantojams, ja pieņem, ka attālumi līdz pavadoņiem ir precīzi zināmi. Tomēr tā nav, jo ir grūti precīzi izmērīt laiku, kādā signāls no pavadoņa sasniedz novērotāju. Šis laiks ir nepieciešams, lai aprēķinātu attālumu līdz pavadonim. Lai iegūtu precīzu attālumu vai signāla ceļā pavadīto laiku, būtu nepieciešami precīzi sinhronizēti pulksteņi pavadonī un GPS uztvērējā. Šobrīd pieejamās tehnoloģijas neļauj izgatavot tik precīzus pulksteņus, lai tie būtu vienlaicīgi pietiekoši lēti un ar pieņemamiem gabarītiem.
Pavadoņos atrodas atompulksteņi un to uzrādīto laiku tur pēc iespējas tuvu universālajam koordinētajam laikam. Pavadoņu atompulksteņu laiku koriģē no Zemes stacijām. GPS uztvērējos izmanto lētus kvarca pulksteņus. Tomēr arī ar kvarca pulksteņiem var ļoti precīzi izmērīt īsus laika intervālus. Ar kvarca pulksteņiem varētu precīzi izmērīt signāla ceļā pavadīto laiku, ja vien būtu precīzi zināms, kad signāls atstāja pavadoni. Realitātē signāla pārraides brīdis tiek noteikts aptuveni un kvarca pulksteni izmanto, lai izmērītu laika nobīdi signāla pienākšanā no šī aptuveni noteiktā signāla pārraides sākuma. Pastāv zināma pulksteņa nobīde, kura izraisa kļūdu aprēķinātajā attālumā līdz katram pavadonim. Tā kā pulksteņus uz visiem pavadoņiem var uzskatīt par precīziem, visu pavadoņu attālumu aprēķinos rodas viena un tā pati kļūda. Izmērītos attālumus, kuri ietver fiksētu attāluma kļūdu, sauc par pseidoattālumiem (pseudoranges - angļu val.).
Atrašanās vietas aprēķinu ērti aprakstīt kā vienādojumu sistēmu, kurā katrs vienādojums dod vienu novērotāja atrašanās vietas koordinātu Dekarta koordinātu sistēmā. Ja īstie attālumi būtu precīzi zināmi, katra no koordinātēm (x, y un z) varētu tikt aprēķināta ar atsevišķu vienādojumu, kurš ietvertu visus trīs izmērītos pavadoņu attālumus un katra pavadoņa zināmo pozīciju (X, Y un Z koordinātēs). Pavadoņu pozīcijas pārraida paši pavadoņi un tādēļ tās pavadoņnavigācijas sistēmas uztvērējam ir zināmas. Tātad būtu pieejama visa nepieciešamā informācija, lai aprēķinātu novērotāja atrašanās vietu.
Pulksteņa nobīdes dēļ, īstie attālumi nav zināmi, bet katra pavadoņa attālumam ir viena un tā pati pulksteņa nobīdes kļūda:
[Īstais attālums]=[Pseidoattālums]-[Pulksteņa nobīde]x[Signāla izplatīšanās ātrums].
Signāla izplatīšanās ātrums ir vienāds ar gaismas ātrumu (apmēram 3 x 108 metri sekundē). Augšējā vienādojumā mīnusa zīme ir tāpēc, ka par pozitīvu pulksteņa nobīdi pieņemts saukt tādu, kad uztvērēja pulkstenis atpaliek no pavadoņu pulksteņiem. Šādā gadījumā uztvērējs sāk laika atskaiti pirms pavadonis ir sācis signāla pārraidi, bet pabeidz laika sprīža mērīšanu, kad uztvērēju sasniedz pārraidītais signāls. Izmērītais laika sprīdis būs garāks nekā īstenībā un aprēķinātais attālums līdz pavadonim arī lielāks.
Ja augstāk esošo īstā attāluma vienādojumu ievieto novērotāja atrašanās vietas x, y un z koordinātu noteikšanas vienādojumos, atrašanās vietu aprēķināt nevar, jo nav zināma pulksteņa nobīdes vērtība. Vienādojumu sistēmā ir trīs neatkarīgi vienādojumi, bet četri nezināmie (x, y, z un pulksteņa nobīde), tādēļ šādu vienādojumu sistēmu atrisināt nav iespējams. Tomēr, ja vienādojumu sistēmā tiek iekļauti ceturtā pavadoņa mērījumi, vienādojumu sistēmu var atrisināt. Augstāk esošo īstā attāluma vienādojumu katram no četriem pavadoņiem var izteikt arī sekojoši:
Īstais attālums=,
kur X, Y, Z - attiecīgā pavadoņa pozīcija; x, y, z - novērotāja atrašanās vietas koordinātes.
Ievietojot otro vienādojumu pirmā vienādojuma īstā attāluma vietā, var iegūt četru vienādojumu sistēmu, kurā neatkarīgi tiek saistītas novērotāja atrašanās vietas koordinātes x, y, z un pulksteņa nobīde. Šādu četru vienādojumu sistēmu ar četriem nezināmajiem ir iespējams atrisināt, ko paveic dators.
Augstāk minētais izskaidro, kāpēc, lai iegūtu trīs dimensiju atrašanās vietu, nepieciešami četri nevis trīs pavadoņi. Tāpat tas skaidro, kāpēc, lai iegūtu novērotāja atrašanās vietu ar noteiktu, iepriekš zināmu, augstumu virs Zemes virsmas, nepieciešami trīs nevis divi pavadoņi. Četru pavadoņu izmantošana trīsdimensionālu rezultātu iegūšanai, ļauj atrisināt arī divu vienlīdz iespējamo novērotāja atrašanās vietu problēmu.
Novērotāja atrašanās vietas iegūšana Dekarta koordinātēs nav īpaši ērta navigācijas nodrošināšanai. Lietotājiem ir jābūt pieejamiem datiem ar Zemi saistītā koordinātu sistēmā, kas parasti ir ģeogrāfiskais platums, garums un augstums. Ģeogrāfiskās koordinātes tiek aprēķinātas izmantojot datoru un dotas atbilstoši Zemes sferoīdam WGS84.
Lielākas pulksteņa nobīdes palielina gadījuma kļūdu iespējamību tādā pašā veidā kā palielināta pozīcijas precizitātes samazināšanās (PDOP) vērtība. Pulksteņa nobīdes iespaidu uz precizitātes samazināšanos raksturo ar laika precizitātes samazināšanos (Time Dilution of Precision (TDOP) - angļu val.). Kopējo PDOP un TDOP iespaidu sauc par ģeometrisko precizitātes samazināšanos (Geometric Dilution of Precision (GDOP) - angļu val.) un to izsaka sekojoši:
.[4]
Pavadoņu zvaigznājs
Lai arī ir nepieciešami tikai četri pavadoņi, lai noteiktu atrašanās vietu trīsdimensionālā telpā, vajag daudz vairāk pavadoņu, lai atrašanās vietu būtu iespējams noteikt jebkurā zemeslodes punktā. Ģeostacionāri pavadoņi nenodrošina pilnīgu Zemes pārklājumu, tādēļ navigācijas pavadoņiem izvēlas orbītas, kuras pārvietojas attiecībā pret Zemes virsmu. Orbītas izvēlās tādas, lai jebkurā Zemes vietā un jebkurā laikā būtu paredzams pārklājums ar labu pozīcijas precizitātes samazināšanās (PDOP) vērtību.
Pavadoņu orbītas savā rotācijā ieņem to pašu stāvokli gan attiecībā pret Zemi, gan kosmiskajā telpā pēc noteikta zvaigžņu diennakšu[5] skaita.
Navigācijas pavadoņus izvieto vienādos intervālos vairākās orbitālajās plaknēs. Pavadoņnavigācijas sistēmā NAVSTAR[6] sākotnēji bija paredzēti 24 pavadoņi - pa astoņiem katrā no trijām orbītām. Šobrīd pavadoņnavigācijas sistēmā GPS izmanto sešas orbītas ar četriem pavadoņiem katrā. Orbitālās plaknes tika izvēlētas, lai sasniegtu labu pārklājumu. Parasti vienlaikus virs horizonta atrodas četri pavadoņi. Diemžēl orbītas, kuras tuvojas polārām orbītām, nav sinhronas (tās neieņem to pašu stāvokli attiecībā pret Zemi un kosmisko telpu pēc noteikta zvaigžņu diennakšu skaita), tādēļ tās neizmanto un līdz ar to pārklājums un pavadoņu izvietojums polārajos rajonos ir sliktāks.
GPS uztvērējs pats izvēlas, kurus pavadoņus izmantot tā atrašanās vietas noteikšanai. Pirmie uztvērēji bija piecu kanālu, kas nozīmēja, ka vienlaicīgi var tikt uztverti pieci pavadoņi. Četrus kanālus izmantoja atrašanās vietas izskaitļošanai no četriem virs horizonta esošiem pavadoņiem, kuriem bija labākais izvietojums (mazākā PDOP vai HDOP vērtība). Piekto kanālu izmantoja, lai iekārta būtu gatava apstrādāt papildus pavadoņa signālu, kad, ar laiku, sākotnēji izvēlēto pavadoņu izvietojums pasliktinājās. Pavadoņu izvēli ietekmēja arī katra pavadoņa signāla un trokšņa attiecība, kā arī tā pacēlums virs horizonta. Tika izvēlēti spēcīgākie signāli un tie pavadoņi, kuri atradās augstāk par 5° virs horizonta.
Mūsdienās izplatīti ir 12 kanālu uztvērēji, kas nozīmē, ka var tikt uztverti visi virs horizonta esošie pavadoņi no 24 navigācijas pavadoņu zvaigznāja. Tas ir izmainījis veidu kā tiek noteikta atrašanās vieta. Būtībā var tikt izmantoti visi virs horizonta esošie pavadoņi, katra pavadoņa ieguldījumu novērotāja atrašanās vietas noteikšanā izsverot atbilstoši tā atrašanās vietai starp pārējiem pavadoņiem. Ja vienlaicīgi ir pieejami vairāki mērījumi, tad ir iespējams novērtēt vai kāds no pavadoņiem nav bojāts un nepārraida neprecīzus datus. Šādu sistēmu sauc par uztvērēja autonomo bojājumu uzraudzības (Receiver Autonomous Integrity Monitoring (RAIM) - angļu val.) sistēmu.
Dažreiz pozīcijas precizitātes samazināšanās (PDOP) kādā rajonā var kļūt ievērojama, iespējams tas ir pārejošs slikts pavadoņu izkārtojums, bet dažkārt to var izraisīt bojāti navigācijas pavadoņi. Bojātu pavadoņu gadījumā var tikt ietekmēts ievērojams rajons. Pavadoņnavigācijas sistēmu uztvērējos var iestatīt HDOP vērtību, kuru pārkāpjot, tiek dots kļūdas paziņojums.[7]
Signāls
GPS pārraida savus civilos signālus L diapazonā 1575,42 MHz frekvencē. Signāli ir vāji (pat zem fona trokšņu amplitūdas), jo kosmiskajā telpā ir ierobežotas iespējas enerģijas iegūšanai lielas jaudas raidītājiem. Nesējfrekvence tiek modulēta ar ciparu kodu. Kad modulējošajā kodā notiek pāreja no signāla 1 uz 0, nesējfrekvence izmaina savu fāzi. Katrs GPS zvaigznāja pavadonis pārraida vienā un tajā pašā frekvencē, bet modulē pārraidāmo frekvenci ar savu, unikālu kodu. GPS pavadoņu civilais C/A[8] kods sastāv no 1023 bitiem un tā pārraide aizņem precīzi vienu milisekundi. Kodu pārraida nepārtraukti un to uzsāk pārraidīt katras milisekundes sākumā. Ar ciparu kodu veiktu modulāciju dēvē par pseidonejaušu troksni (pseudorandom noise (PRN) - angļu val.) vai ar kodu atdalītu, daudzu lietotāju piekļuvi (Code Division Multiple Access (CDMA) - angļu val.), kas ir platjoslas modulācijas veids.
Pie tam signāls nav detektējams un uztverams, ja uztvērējam nav demodulācijas atslēgas koda. Katram pavadonim ir savs modulācijas kods. Uztvērējs zin katra pavadoņa kodu. Mēģinot uztvert kādu konkrētu pavadoni, uztvērējs pārbīda šī pavadoņa koda kopiju secīgi par vienu bitu uz priekšu un salīdzina ar uztverto signālu. Tiek salīdzināts katrs uztvertā signāla bits ar pārbīdītās koda kopijas bitiem. Katrā punktā tiek piešķirts rezultāts "1", ja uztvertais signāls sakrīt ar pārbīdītās koda kopijas signālu. Ja sakritības nav, tiek piešķirts rezultāts "0". Pēc tam notiek rezultātu summēšana visā uztvertā signāla garumā. Ja sakrīt 50 punkti (50 no 1023), tiek piešķirts rezultāts 50. Pēc tam pavadoņa koda kopiju pārbīda uz priekšu par vēl vienu bitu un salīdzināšanu atkārto iegūstot citu rezultātu. Visbeidzot salīdzina visus iegūtos rezultātus un izvēlas vislielāko. Ja tas tuvojas 1023, tad uztvērējs ir veiksmīgi atradis meklētā pavadoņa signālu. Pie tam var noskaidrot par cik bitiem tika pārbīdīta pavadoņa koda kopija, lai iegūtu visaugstāko rezultātu jeb par cik bitiem tika pārbīdīta pavadoņa koda kopija, lai tā pēc iespējas precīzāk sakristu ar uztverto signālu.
Ciparu kodi tiek ar nolūku izvēlēti, lai dotu lielu sakrišanas punktu skaitu, ja uztvertais signāls pilnīgi sakrīt ar pavadoņa koda kopiju. Tas ļauj uztvertajam signālam būt mazas jaudas, pat tik mazas jaudas, ka katru konkrētu bitu dažkārt nav iespējams izšķirt. Pat tad, ja trokšņa vai citu iemeslu dēļ nav iespējams izšķirt katru konkrētu bitu un kāds no tiem pazūd, ir iespējams konstatēt uztvertā signāla un pavadoņa koda kopijas sakrišanu pēc strauja sakrišanas punktu skaita pieauguma salīdzinot ar pavadoņa koda kopijas izvietojumu pirms un pēc sakrišanas punktu maksimuma.
Tā kā var tikt noteikta uztvertā signāla un pavadoņa koda kopijas sakrišana, var tikt noteikts arī uztvertā signāla pienākšanas laiks attiecībā pret uztvērēja pulksteni. Vienīgais uztvērēja un pavadoņa pulksteņiem jābūt salāgotiem ar precizitāti augstāku par pavadoņa koda garumu, kas GPS C/A gadījumā ir viena milisekunde. Tas ir pseidoattāluma mērīšanas pamats.
Visi pavadoņi raida pāri viens otra signāliem, vienā un tajā pašā frekvencē. Bieži kā GPS uztvērēja raksturlielums tiek minēts kanālu skaits. Tas nozīmē, cik pavadoņus vienlaicīgi uztvērējs ir spējīgs detektēt. Kad uztvērējs ir detektējis vajadzīgā pavadoņa signālu, tas sāk tā sūtītās informācijas saņemšanu, tai skaitā datus par laiku, nedēļas numuru, pavadoņa darbības kvalitāti un pavadoņa plānotajām pozīcijām. Šos datus sauc par navigācijas ziņojumu un to pārraida ar zemu datu pārraides ātrumu atšķirībā no salīdzināšanai paredzētā koda. Navigācijas ziņojuma ciparu dati modulē (modificē) salīdzināšanai paredzēto pavadoņa kodu veidā, kurš neietekmē salīdzināšanas procesu, bet var tikt demodulēts uztvērējā. GPS katrs datu bits modulē virkni pamata C/A koda bitu. Viens navigācijas ziņojuma bits laika ziņā aizņem vienu piecdesmito daļu no sekundes un navigācijas ziņojuma pārraides ātrums tātad ir 50 biti sekundē.
Ja pamata dati par visiem pavadoņiem zvaigznājā nav iepriekš ielādēti pavadoņnavigācijas sistēmas uztvērējā, var būt nepieciešamas līdz pat 12,5 minūtēm, lai tos lejupielādētu un tikai tad būs iespējams noteikt novērotāja atrašanās vietu. Tik liels laiks nepieciešams tikai zemā datu pārraides ātruma dēļ.[9]
Laiks, cik ātri pēc ieslēgšanas var sagaidīt aprēķinātu pozīciju, ir viens no GPS uztvērēju raksturojošiem lielumiem un to sauc par aukstā starta laiku (cold start time - angļu val.). Pamata datus par visiem pavadoņiem zvaigznājā ielādēt uztvērējā jau rūpnīcā nav iespējams, jo pavadoņu kustība dažādu iemeslu dēļ mainās un tiek precizēta ar dzinējiem, tie iziet no ierindas, tos nomaina. Bieži pēc aukstā starta ir redzams, ka pirmā pozīcija, ko uztvērējs dod, ir ļoti neprecīza, bet tās precizitāte pamazām uzlabojas. Tā notiek, jo trokšņa efekts rada iegūto pozīciju izkliedi ap vidējo vērtību. Lai šo izkliedi samazinātu un uzlabotu precizitāti, tiek uzrādīta noteikta laika perioda vidējā vērtība. Tā kā pavadoņnavigācijas sistēmas parasti izmanto uz mobilām platformām, tad vidējās vērtības atrašanā jāņem vērā arī platformas kustība starp mērījumiem.
Precizitātes ierobežojumi
Pastāv virkne fizikālu procesu, kuri ierobežo GPS precizitāti. Tāpat pastāv veidi, kā šo fizikālo procesu ietekmi mīkstināt, tomēr GPS uzbūvei un konkrētu GPS uztvērēju uzbūvei arī ir savi ierobežojumi, kas bieži liedz pilnībā novērst fizikālo procesu ietekmi.
Papildus tam pati GPS uzbūve ietekmē precizitāti. Piemēram civilie GPS lietotāji izmanto C/A[8] kodu, kurš ir salīdzinoši lēns modulācijas kods. Tā ātrums ir 1023 biti milisekundē. Militārie uztvērēji izmanto precīzo P kodu, kura ātrums ir 10 230 biti milisekundē. Jo ātrāks kods, jo biežāk var noteikt atrašanās vietu, jo precīzāka novērotāja atrašanās vietas noteikšana kopumā. Tāpat militārie uztvērēji izmanto divas frekvences, kas ļauj labāk novērtēt kavējumus atmosfērā, tādējādi vēl vairāk uzlabojot šo uztvērēju precizitāti.[10]
Dažādi kavējumi atmosfērā
Signālam no pavadoņa, ieejot Zemes atmosfērā, tas tiek aizvien vairāk un vairāk bremzēts palielinoties atmosfēras blīvumam. Mainīgā atmosfēras blīvuma dēļ, signāla trajektorija maina savu formu, tā tiek izliekta. Šādu parādību sauc par refrakciju un tā palielina ceļu, kurš signālam jānoiet no pavadoņa līdz uztvērējam. Atmosfēru var iedalīt divos slāņos: jonosfērā un troposfērā.
Jonosfēra sastāv no pozitīvi lādētiem gāzu joniem un brīvajiem elektroniem un tā izvietota no 50 līdz 1000 km virs Zemes virsmas. Signāla kavējumi ir atkarīgi no jonizēto daļiņu izplatības un blīvuma. Efekts ir atkarīgs no signāla krišanas leņķa jonosfērā, diennakts perioda, Saules uzliesmojumiem, vietējiem Zemes magnētiskā lauka efektiem, kā arī GPS signāla frekvences. Vairums GPS uztvērēju jonosfēras kļūdu ignorē. Ja pavadonis atrodas zenītā, kļūda pseidoattālumā var būt 3 līdz 15 metri, ja pavadoņa augstums virs matemātiskā horizonta ir zem 10°, kļūda var sasniegt no 9 līdz 45 metriem. Kavējums ir apgriezti proporcionāls signāla frekvences kvadrātam:
,
kur k - signāla kavējums jonosfēras dēļ; f - signāla frekvence.
Militārie divu frekvenču uztvērēji, izmantojot augstāk minēto sakarību, spēj kompensēt kļūdas pseidoattālumā jonosfēras ietekmes dēļ. Dažādi GPS papildinājumi kā DGPS, WAAS vai EGNOS, tāpat spēj lielā mērā korektēt kļūdas pseidoattālumā.
Troposfēra ir zemākais atmosfēras slānis līdz 30 km augstumam. Tā rada mitros un sausos signāla kavējumus. Mitros rada ūdens molekulas, bet sausos atmosfēras gāzes. Kopējo efektu ietekmē mitrums. Vairums GPS uztvērēju izmanto standarta modeļus troposfēras kavējumu paredzēšanai. Šie modeļi ņem vērā pavadoņa augstumu virs matemātiskā horizonta. Efekts vienādi ietekmē visas frekvences. Ja pavadonis atrodas zenītā, kļūda pseidoattālumā var būt 2,5 metri, ja pavadoņa augstums virs matemātiskā horizonta ir 10°, kļūda var sasniegt 25 metrus.
Vislielākās kļūdas uztvertajos signālos ir no zemu izvietotiem pavadoņiem, jo signāli no šādiem pavadoņiem ceļo cauri biezākam troposfēras slānim. Šī iemesla dēļ pavadoņus, kuru augstums virs matemātiskā horizonta ir zem 5°, atrašanās vietas noteikšanā neizmanto.[11]
Kļūdas signālu atstarošanās dēļ
Signāls no pavadoņa dažkārt nenonāk GPS uztvērējā tieši, bet gan atstarojoties no kāda objekta. Tas palielina pseidoattālumu par neprognozējamu lielumu. Jūrā tā nav tik nozīmīga problēma kā kalnainos apvidos, pilsētās vai mežos. Tomēr kuģu GPS antenas reti ir izvietotas optimāli. Dažos gadījumos var būt neiespējami uztvert kādu no pavadoņiem tieši. Signāli no šāda pavadoņa var tikt uztverti atstarojoties no virsbūves vai cita objekta. Tas rada dažāda lieluma kļūdas, kuras ir atkarīgas no kuģa diametrālās plaknes virziena attiecībā pret pozīcijas noteikšanā izmantotajiem pavadoņiem. Sliktākajā gadījumā kļūda var sasniegt kuģa garuma vērtību. Dažkārt spēcīgs atstarotais signāls var nonākt uztvērējā kopā ar tiešo un padarīt dotā pavadoņa uztveršanu neiespējamu. Tādā gadījumā uztvērējs var pārslēgties uz citu pavadoni, bet pozīcijas precizitātes samazināšanās (PDOP) vērtība visticamāk pieaugs. Kvalitatīvi GPS uztvērēji atpazīst spēcīgāko signālu, kurš parasti ir tiešais nevis atstarotais signāls.
Kļūdas signālu atstarošanās dēļ nevar likvidēt ar DGPS vai citiem GPS papildinājumiem.[12]
Kļūdas pavadoņu pozīcijās
Pavadoņu pārraidītie navigācijas ziņojumi satur datus, kurus GPS uztvērējs spēj pārrēķināt pavadoņu pozīcijās, kādas tās būs katra salīdzināšanai paredzētā koda pārraides sākumā jeb katras milisekundes sākumā. Pavadoņu pozīcijas ir nepieciešamas atrašanās vietas aprēķinam un tās ir nevis tieši izmērītas, bet aprēķinātas uztvērējā un tāpēc var atšķirties no patiesajām pavadoņu pozīcijām. Kļūda pavadoņu pozīcijās var sasniegt divus metrus. Šo kļūdu var likvidēt izmantojot DGPS vai citas GPS papildināšanas metodes.[13]
Pavadoņu pulksteņu kļūdas
Lai arī pavadoņu atompulksteņi ir precīzi un tos tādus uztur ar pārraidēm no Zemes stacijām, vienalga pastāv atlikušās kļūdas. GPS sistēmai tās var būt līdz septiņām nanosekundēm lielas, kas izteiktas pseidoattālumā sastāda divus metrus. Kļūdas atrašanās vietā, kuras radušās pavadoņu pulksteņu neprecizitātes dēļ, var likvidēt izmantojot kādu no GPS papildināšanas paņēmieniem (augmentation techniques - angļu val.).[14]
Trokšņa efekts
Pseidoattālumu mērījumos neizbēgami rodas gadījuma rakstura kļūdas. Tām var būt dabīga un mākslīga izcelsme. Gadījuma rakstura kļūdu esamību dēvē par troksni un tas var ietekmēt signālu pārraidi pavadonī, signālu uztveršanu uztvērējā, kā arī kropļot signālu tā ceļā no raidītāja uz uztvērēju. Troksnis ir nejaušs un neparedzams efekts. Lai arī troksnis ir neparedzams, tā iespaidu uz GPS mērījumiem ir iespējams novērtēt. Troksnis pakļaujas normālajam jeb Gausa sadalījumam un tādēļ GPS sistēmai var aprēķināt vidējo kvadrātisko novirzi jeb standartnovirzi:
,
kur - pirmā mērījuma rezultāts; - otrā mērījuma rezultāts; - tā mērījuma rezultāts; - vidējā aritmētiskā vērtība; - mērījumu skaits.
Viena standartnovirze σ nozīmē, ka 68,28% rezultātu atradīsies joslā, kuras platums 2σ un kura centrēta ap vidējo aritmētisko vērtību jeb 34,14% uz katru pusi no vidējās aritmētiskās vērtības. DGPS vai citas GPS papildināšanas metodes var cīnīties pret pavadoņa raidītāja troksni, bet tam nav nozīmīga efekta. Ar šādiem paņēmieniem nevar samazināt uztvērēja troksni, jo tos izgatavojuši dažādi ražotāji un attiecīgi arī vidējā kvadrātiskā kļūda jeb standartnovirze tiem būs dažāda.[15]
Vispārējās un speciālās relativitātes iespaids
Pavadoņi atrodas vājākā gravitācijas laukā salīdzinot ar uztvērējiem, tādēļ to pulksteņi iet ātrāk nekā tie ietu uz Zemes. Lai kompensētu šo efektu, pavadoņu pulksteņus iestata tā, lai tie vienmēr nedaudz kavētos. GPS sistēmā pulksteņu darbs ir bāzēts 10 230 000 Hz frekvencē, bet pavadoņu pulksteņi darbojas ar 10 229 999,99545 Hz. Pavadoņa relatīvajam ātrumam attiecībā pret uztvērēju ir ļoti mazs iespaids uz izmērīto pseidoattālumu. Dažos uztvērējos tas tiek kompensēts, bet kļūda izmērītajā pseidoattālumā parasti nav lielāka par vienu centimetru.[15]
Uztvērēja kustība
Atrašanās vietas aprēķins aizņem zināmu laika sprīdi, tādēļ iegūtā pozīcija attieksies uz kaut kādu pagātnes momentu. Trokšņa efekts rada iegūto pozīciju izkliedi ap vidējo vērtību. Lai šo izkliedi samazinātu un uzlabotu precizitāti, tiek uzrādīta noteikta laika perioda vidējā vērtība. Tā kā GPS parasti izmanto uz mobilām platformām, tad vidējās vērtības atrašanā jāņem vērā platformas kustība starp mērījumiem. To paveic izmantojot Kalmana filtrus.[16] Tādā veidā ievērojami uzlabojas precizitāte, ja platforma pārvietojas ar pastāvīgu ātrumu, kā arī tiek noņemts atrašanās vietas aprēķina kavējums. Tomēr manevrēšanas laikā, kas ietver paātrinājumus, tajā skaitā virziena maiņu, Kalmana filtrs var uzrādīt pozīcijas, kuras ir salīdzinoši neprecīzas un kurām piemīt kavējums. Šādas neprecizitātes var novērst, ja Kalmana filtram pievada datus no inerciālajiem sensoriem, kas mūsdienās nav izplatīts paņēmiens.
Uzrādītajai GPS pozīcijai ir tendence turpināt esošo lineāro trajektoriju, tikai lēnām tuvojoties reālajai trajektorijai. Ar GPS noteiktā atrašanās vieta vienmēr būs neprecīzāka, ja kustība nenotiek ar pastāvīgu ātrumu un kursu vai mobilā platforma neatrodoas stacionārā pozīcijā.[17]
Traucējumi, traucēšana un maldināšana
Traucējumi ir nejauši uztvērēja darbības pārtraukumi, ko izraisa elektromagnētiskais starojums no citiem avotiem. Tie var novest pie pilnīga atrašanās vietas pozīcijas zuduma. Uztvertie GPS signāli ir ļoti vāji. Tas ir tādēļ, ka uz pavadoņa ir dārgi saražot enerģiju lielas jaudas raidītājam. Pārraidāmajiem signāliem ir tikai tik daudz jaudas, lai sistēma būtu efektīva. Tomēr šis apstāklis padara signālus neaizsargātus pret salīdzinoši mazas jaudas traucējumiem, kuri var padarīt neiespējamu pienācīgu signālu uztveršanu. Lai arī traucējumi nav bieži sastopama parādība, tie var būt izplatīti atsevišķos rajonos, īpaši televīzijas vai citu lielas jaudas raidītāju tuvumā. Citi potenciāli traucējumu avoti ir karakuģu radari un sakaru iekārtas vai arī bojāts elektroniskais aprīkojums. Jaunāki GPS uztvērēji ir spējīgi apmierinoši strādāt pie vidēja traucējumu līmeņa, bet vecāki uztvērēji var tikt padarīti pilnībā nederīgi.
Traucēšana ir ar nolūku radīts elektromagnētiskais starojums, lai padarītu neiespējamu sistēmas efektīvu lietošanu. Ir tehniskā ziņā viegli traucēt civila GPS uztvērēja darbību. Mazas jaudas traucējošās iekārtas ir viegli uzbūvējamas vai iegādājamās. Teroristiem ir viegla piekļuve šādām tehnoloģijām. Vairākās valstīs tiek izvērtēta GPS izmantošana, lai iekasētu nodevas par ceļu izmantošanu. Tas nākotnē var palielināt traucējošo iekārtu piedāvājumu un to nelegālu izmantošanu. Bruņotajiem spēkiem ir pieejamas lielas jaudas traucējošās iekārtas, kuras var paralizēt GPS signālu uztveršanu vairāku simtu kilometru rādiusā.
Maldināšana ir ar nodomu pārraidīti pavadoņiem līdzīgi signāli, kas var likt GPS uztvērējiem uzrādīt kļūdainu atrašanās vietas pozīciju. Šādas sistēmas dēvē par pseidolītiem un tām var būt arī likumīgs pielietojums. Lietotas ļaunprātīgi, šādas sistēmas var radīt lielas ar GPS noteiktas pozīcijas kļūdas. Ja kļūda tiek palielināta lēnām, tās esamību var nepamanīt. Tādēļ kuģiem, kuri tiek ekspluatēti kara zonu tuvumā, ir bīstami izmantot tikai no GPS iegūtu informāciju par to atrašanās vietu.
Tiek paredzēts, ka nākotnē arī civilajiem lietotājiem būs piekļuve divām frekvencēm. Tas palīdzēs samazināt ne tikai kļūdas pseidoattālumā jonosfēras ietekmes dēļ, bet arī padarīs traucēšanu ievērojami grūtāku.[18]
Uztvērēji
GPS uztvērējs parasti sastāv no antenas un uztvērēja/procesora, kurš vairumā gadījumu apgādāts ar displeju un vadības orgāniem. Uztvērējam ir arī ciparu saskarne, lai aprēķinātās pozīcijas varētu pārraidīt uz citu navigācijas aprīkojumu vai displejiem, it īpaši uz elektronisko karšu sistēmu. Kuģu GPS uztvērējiem ne vienmēr ir savs displejs un vadības orgāni. Tos var nodrošināt cita sistēma, kura lieto aprēķināto atrašanās vietas informāciju, piemēram, tā pati elektronisko karšu sistēma.
SJO[19] nosaka prasības uztvērēju precizitātei, kuras ir vienādas gan statiskos, gan dinamiskos apstākļos. Pie tam dinamiskie apstākļi ietver jūras viļņošanos un kuģa kustību, kāda tā ir parastos apstākļos. Nepieciešamā precizitāte GPS uztvērējam ir 13 metri (95%) pie horizontālās precizitātes samazināšanās (HDOP) vērtības mazākas vai vienādas ar četri vai arī pozīcijas precizitātes samazināšanās (PDOP) vērtības mazākas vai vienādas ar seši. 95% nozīmē, ka 95% no laika kļūda ir 13 metri vai mazāka. Tātad kļūda var būt lielāka par 13 metriem 5% no visa laika. Maksimāli pieļaujamais kļūdas lielums nav noteikts. Lielas kļūdas var rasties anomālu jonosfēras apstākļu dēļ, ja PDOP vērtība ir lielāka par seši, ja ir traucējumi, notiek traucēšana vai maldināšana, kā arī, ja GPS antenai ir slikts izvietojums.
Pēc uztvērēja ieslēgšanas var paiet zināms laiks līdz tas dod precīzu atrašanās vietas pozīciju. Tam ir divi iemesli. Pirmkārt, uztvērējam jāveic salīdzināšanas procesi ar pavadoņu signāliem, lai tos identificētu un varētu turpmāk izmantot pseidoattālumu mērīšanai. Otrkārt, uztvērējam jālejupielādē navigācijas ziņojums ar datiem, ko tas izmanto, lai noteikt pavadoņu atrašanās vietas. Šie dati parasti ir derīgi vairākas dienas, tāpēc, ja uztvērējs ir bijis izslēgts īslaicīgi, tajā var būt saglabājušies derīgi dati.
SJO prasības ir, ka atrašanās vietas pozīcijai jābūt pieejamai 30 minūtes pēc ieslēgšanas vai arī 5 minūtes pēc ieslēgšanas, ja derīgi navigācijas ziņojuma dati jau ir ielādēti. Ja ir bijis īss pārtraukums barošanā (īsāks par 60 sekundēm), uztvērējam jāatjauno sava darbība divu minūšu laikā. Nepastāv prasība saglabāt navigācijas ziņojuma datus, ja barošana tikusi atslēgta uz laiku ilgāku par vienu minūti.
Uztvērējam jāspēj ģenerēt atrašanās vietas pozīcijas koordinātes katru sekundi. Modernie uztvērēji pozīciju ģenerē biežāk, saglabā navigācijas ziņojumu atmiņā, kurai nav nepieciešams ārējs barošanas avots, kā arī tiem ir ievērojami samazināts laiks no ieslēgšanas brīža līdz pirmajai atrašanās vietas pozīcijas koordinātu iegūšanai.[20][21]
Uztvērēja autonomā bojājumu uzraudzības sistēma (RAIM)
GPS pakalpojumu piegādātājs uzrauga pavadoņu darbību, tomēr tas būtu ļoti dārgi izvietot tādas uzraugošās stacijas, kuras varētu momentāni konstatēt jebkura navigācijas pavadoņa bojājumu. Tas prasītu daudzu uzraugošo staciju izvietošanu pa visu pasauli, arī okeānos. Tādēļ pastāv iespējamība, ka bojātais navigācijas pavadonis pārraida kļūdainus datus vairāk par vienu stundu ilgi. Tiklīdz bojājumu pamana uzraugošā stacija, pavadonim tiek dota komanda pārraidīt ziņojumu, kurš pārtrauc attiecīgā pavadoņa datu izmantošanu uztvērējos.
Uztvērēja autonomā bojājumu uzraudzības sistēma (Receiver Autonomous Integrity Monitoring (RAIM) - angļu val.) ir uztvērējā iebūvēta sistēma, kura spēj konstatēt anomālijas izmērītajos pseidoattālumos vēl pirms uzraugošās stacijas. Šādas sistēmas esamība kuģu GPS uztvērējos ir obligāta. Tā kā, lai noteiktu novērotāja atrašanās vietu, ir nepieciešami tikai četri pavadoņi, bet uztvērējam redzami ir krietni vairāk pavadoņu, tad ir iespējams noteikt atrašanās vietu izmantojot dažādas četru pavadoņu kombinācijas. Iegūtās atrašanās vietas salīdzina un, ja viens no pavadoņiem ir izmantots visos tajos gadījumos, kad atrašanās vietā bija kļūda, kura pārsniedza tādu, kura būtu sagaidāma sliktākas pozīcijas precizitātes samazināšanās (PDOP) vērtības dēļ, visticamāk attiecīgais navigācijas pavadonis ir bojāts. Ja tā notiek, lietotājs tiek informēts, ka ir nostrādājusi uztvērēja autonomā bojājumu uzraudzības sistēma (RAIM). Sistēmai jāspēj konstatēt bojāts navigācijas pavadonis desmit sekunžu laikā no kļūdainu datu pārraides sākuma.[22]
Vēsture
- 1967. gada 31. maijā tika palaists pavadonis Timation 1, ar kuru veica navigācijas eksperimentus.
- 1974. gada 14. jūlijā startēja pavadonis NTS 1 — GPS priekštecis, ar kuru izmēģināja GPS tehnoloģijas.
- 1978. gada 22. februārī tika palaists pavadonis Navstar 1 — pirmais eksperimentālais 1. grupas (GPS Block 1) pavadonis. Līdz 1985. gadam tika palaisti vēl 10 GPS pavadoņi.
- 1988. gads — pieņemts lēmums par modernizētas GPS sistēmas (GPS Block 2) izveidi, kas sastāvētu no 24 pavadoņiem.
- 1989. gada 14. februārī — (USA 35) startēja pirmais 2. grupas pavadonis.
- 1994. gada 10. marts — (USA 100) orbītā ievadīts 24. GPS pavadonis. Līdz ar to GPS sistēma ir pilnā sastāvā.
- 2000. gada 1. maijā tika atslēgta traucējumu sistēma (Selective Availability) civilajiem lietotājiem; koordināšu noteikšanas precizitāte pieauga no 100 m līdz 20 m.
Piezīmes un atsauces
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 22, 23. lpp. ISBN 9781906915117
- ↑ Legzdiņš H. Navigācija. - I. daļa. Izdevniecība "Zvaigzne", 1971. 246., 249. lpp.
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 23., 24. lpp. ISBN 9781906915117
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 24. - 26. lpp. ISBN 9781906915117
- ↑ Zvaigžņu diennakts (sidereal day - angļu val.) ir laiks, kurā Zeme izdara vienu apgriezienu ap savu asi attiecībā pret zvaigznēm. Tās ilgums ir 23 stundas un 56 minūtes.
- ↑ Sākotnējais GPS sistēmas nosaukums.
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 27. - 29. lpp. ISBN 9781906915117
- ↑ 8,0 8,1 Rupjais, iegūšanas (Coarse Acquisition (C/A) - angļu val.) kods, kuru izmanto zemākas precizitātes novērotāja atrašanās vietas iegūšanai, kā arī militāro uztvērēju darbības sākumposmā.
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 29. - 31. lpp. ISBN 9781906915117
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 31. lpp. ISBN 9781906915117
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 31. - 33. lpp. ISBN 9781906915117
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 33. - 34. lpp. ISBN 9781906915117
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 34. lpp. ISBN 9781906915117
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 34. - 35. lpp. ISBN 9781906915117
- ↑ 15,0 15,1 Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 35. lpp. ISBN 9781906915117
- ↑ Kalmana filtru izmanto sistēmas parametru novērtēšanai. Tas var izmantot neprecīzus vai trokšņainus mērījumus, lai ar lielāku precizitāti novērtētu mainīgā stāvokli vai pat cita nenovērojama mainīgā stāvokli. Bieži Kalmana filtrus izmanto objektu izsekošanā - tiek izmantota objekta izmērītā pozīcija, lai daudz precīzāk novērtētu tā atrašanās vietu un ātrumu. Kalmana filtra pārākums slēpjas nevis faktā, ka ar to var izlīdzināt mērījumu rezultātus, bet gan tā spējā novērtēt sistēmas parametrus, kurus nevar precīzi izmērīt vai pat novērot.
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 35. - 36. lpp. ISBN 9781906915117
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 36. - 37. lpp. ISBN 9781906915117
- ↑ Starptautiskā Jūrniecības organizācija (International Maritime Organization (IMO) — angļu val.)
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 37. - 39. lpp. ISBN 9781906915117
- ↑ SJO rezolūcija MSC.112(73):2000
- ↑ Norris A. ECDIS and POSITIONING Nautical Institute, 2010. 39. - 40. lpp. ISBN 9781906915117
Ārējās saites
Vikikrātuvē par šo tēmu ir pieejami multivides faili. Skatīt: Globālā pozicionēšanas sistēma |
- Kā darbojas pavadoņnavigācijas sistēmas GPS un GLONASS. (video) (krieviski)
- Pastāvīgo globālās pozicionēšanas bāzes staciju sistēma "Latvijas Pozicionēšanas sistēma".
|