വെളുത്ത കുള്ളൻ
ദ്രവ്യമാനം കുറഞ്ഞ നക്ഷത്രങ്ങൾ അവയുടെ പരിണാമത്തിന്റെ അന്ത്യത്തിൽ എത്തിചേരാവുന്ന അവസ്ഥകളീൽ ഒന്നാണു വെളുത്ത കുള്ളൻ അല്ലെങ്കിൽ വെള്ളക്കുള്ളൻ. സാധാരണനിലയിൽ ചന്ദ്രശേഖർ സീമയിൽ താഴെ ദ്രവ്യമാനമുള്ള എല്ലാ നക്ഷത്രങ്ങളും അവയുടെ പരിണാമത്തിന്റെ അന്ത്യദശയിൽ വെള്ളക്കുള്ളന്മാരായി മാറും. സൂര്യനും അതിന്റെ അന്ത്യദശയിൽ വെള്ളക്കുള്ളനായി മാറും എന്നു സൈദ്ധാന്തിക പഠനങ്ങൾ തെളിയിക്കുന്നു.
ലാന്റോവുവിന്റെ നിരീക്ഷണമനുസരിച്ച് അധികവലിപ്പമില്ലാത്ത നക്ഷത്രങ്ങൾ വെള്ളക്കുള്ളൻമാരായിതീരുന്നു. ഏതാനും മൈൽ മാത്രം വലിപ്പമുള്ള നക്ഷത്രങ്ങളുടെ ഈ അവസ്ഥ താരതമ്യേന തണുത്തതായിരിക്കും. എന്നാൽ ഇവയുടെ പരിണാമത്തിന്റെ ആദ്യപാദങ്ങൾ മറ്റുള്ളവയിൽ നിന്ന് ഭിന്നമല്ല. ഉള്ളിലുള്ള വൈദ്യുത് കാന്തിക വികർഷണം ഗുരുത്വാകർഷണത്തിനു തുല്യമാകുന്ന അവസ്ഥയിൽ ചുരുങ്ങൽ അവസാനിക്കുന്നു. കാരണം അത്രയ്ക്കു പിൺഡമേ അതിലടങ്ങിയിട്ടുള്ളൂ. ഇത്തരം ആയിരക്കണക്കിന് വെള്ളക്കുള്ളൻമാർ നമ്മുടെ ആകാശഗംഗയിലുണ്ട്. ഇവയെല്ലാം തന്നെ വളരെ തിളക്കം കുറഞ്ഞ നക്ഷത്രങ്ങളാണ്.
ലഘുതാരത്തിന്റെ വെള്ളക്കുള്ളനായുള്ള പരിണാമം
ഒരു ലഘു താരത്തിന്റെ ഊർജ്ജ ഉൽപാദനം അതിന്റെ കാമ്പ് ഹീലിയം അല്ലെങ്കിൽ കാർബൺ ആയി തീരുന്നതോടെ അവസാനിക്കുന്നു . അടുത്ത ന്യൂക്ലിയർ പ്രക്രിയ ആരംഭിക്കുവാൻ വേണ്ട താപം ഉൽപാദിപ്പിക്കുവാൻ ലഘുതാരത്തിനു കഴിയാതെ വരുന്നു.
കാമ്പിൽ ഊർജ്ജ ഉൽപാദനം നിലയ്ക്കുന്നതോടെ കാമ്പ് തണുക്കാനും അതു മൂലം സങ്കോചിക്കാനും തുടങ്ങുന്നു. സങ്കോചം മൂലം കാമ്പിലെ പദാർത്ഥത്തിന്റെ സാന്ദ്രതയും താപവും വർദ്ധിക്കുന്നു.അത്യുഗ്രമായ താപവും മർദ്ദവും ഉള്ള ഈ ഘട്ടത്തിൽ കാമ്പ് ചുരുങ്ങി കൊണ്ടേ ഇരിക്കും. സാന്ദ്രത വർദ്ധിച്ച് ഇനി ഒരു ചുരുങ്ങൽ സാധിക്കാത്ത വിധത്തിൽ കാമ്പിലെ ഇലക്ട്രോണുകൾ തമ്മിലടുക്കുന്നു. അതോടെ സങ്കോചം നിലയ്ക്കുന്നു. അതിനു കാരണം Pauli's exclusion principle ആണ്. ഈ നിയമം അനുസരിച്ച് ഒന്നിലേറെ ഇലക്ട്രോണുകൾക്ക് ഒരേ സമയം ഒരേ ഊർജ്ജാവസ്ഥയിൽ ഇരിക്കാൻ പറ്റില്ല. തന്മൂലം ഇലക്ട്രോണുകളെല്ലാം വ്യത്യസ്ത ഊർജ്ജ അവസ്ഥകളിൽ ആയിരിക്കുവാൻ ശ്രമിക്കുന്നു. ഒരു നക്ഷത്രത്തിലെ കോടാനുകോടി ഇലക്ട്രോണുകൾക്ക് വ്യത്യസ്ത ഊർജ്ജാവസ്ഥ ഉണ്ടാകണം എങ്കിൽ അവയെല്ലാം അതിവേഗം ചലിച്ചു കൊണ്ടിരിക്കണമല്ലോ. ഈ ചലനം മൂലം ഉണ്ടാകുന്ന അത്യധികമായ ഉയർന്ന മർദ്ദത്തെ പോളീ മർദ്ദം എന്നു പറയുന്നു. ഈ മർദ്ദം ആണു സങ്കോചത്തെ തടയുന്നത്.
ഇത്തരത്തിൽ ഇലക്ട്രോണിന്റെ പോളി മർദ്ദം മൂലം സങ്കോചം അവസാനിക്കുന്ന പ്രക്രിയയെ ശാസ്ത്രജ്ഞന്മാർ ഇലക്ട്രോൺ അപഭ്രഷ്ടത (electron degeneracy)എന്നു വിളിക്കുന്നു. ഇലക്ട്രോൺ അപഭ്രഷ്ടത മൂലം സങ്കോചം നിലച്ച് സന്തുലിതാവസ്ഥയിൽ എത്തിയ ഇത്തരം നക്ഷത്രത്തെ ആണ് വെള്ളക്കുള്ളൻ അഥവാ White dwarf എന്ന് വിളിക്കുന്നത്. സാധാരണ വാതകങ്ങൾ സങ്കോചിക്കുമ്പോൾ ഇത്തരം ഒരു പ്രശ്നം ഇല്ല. കാരണം എല്ലാ ഊർജ്ജനിലകളും പ്രാപിക്കുവാൻ ആവശ്യമായ ഇലക്ട്രോണുകൾ ഉണ്ടാവില്ല. പക്ഷേ ഈ അവസ്ഥയിൽ ഉള്ള നക്ഷത്രത്തിൽ അതിലുള്ള ഇലക്ട്രോണുകൾ എല്ലാം ഗുരുത്വാകർഷണം മൂലം വലിച്ചടുപ്പിക്കപ്പെടും. അതിനാൽ ഇലക്ടോണുകൾ സാദ്ധ്യമായ എല്ലാ ഊർജ്ജനിലകളും പ്രാപിക്കും. അങ്ങനെ ഇലക്ട്രോണുകൾ എല്ലാ ഉർജ്ജനിലകളും പ്രാപിച്ചു കഴിഞ്ഞ നക്ഷത്രം അപഭ്രഷ്ടം ആകുന്നു.
അപഭ്രഷ്ട പദാർത്ഥത്തിനു ചില സവിശേഷതകൾ ഉണ്ട്. ഉദാഹരണത്തിനു വെള്ളക്കുള്ളന്റെ ദ്രവ്യമാനം കൂടും തോറും അതിന്റെ വ്യാസം കുറയുന്നു. അതിനു കാരണം ദ്രവ്യമാനം കൂടുതൽ ഉള്ള വെള്ളക്കുള്ളന് ഇലക്ടോണുകൾ കൂടുതൽ വലിച്ചടുപ്പിച്ചാലേ ഗുരുത്വാകർഷണത്തെ അതിജീവിക്കുവാനുള്ള മർദ്ദം കിട്ടൂ എന്നതാണ്. ഈ ഒരു കാരണം കൊണ്ടാവണം ഇതിന്റെ പേരിൽ കുള്ളൻ എന്ന വാക്കു കടന്നു വന്നത്.
ചന്ദ്രശേഖർ സീമ
ദ്രവ്യമാനം കൂടിയ നക്ഷത്രമാണെങ്കിൽ പോളീമർദ്ദത്തിനും നക്ഷത്രത്തിന്റെ സങ്കോചത്തെ തടഞ്ഞു നിർത്താൻ പറ്റാതെ വരും. അപ്പോൾ ഒരു നക്ഷത്രം മൃതിയടയുമ്പോൾ അത് വെള്ളക്കുള്ളൻ ആയി മാറണമെങ്കിൽ നക്ഷത്രത്തിന്റെ ദ്രവ്യമാനത്തിനു ഒരു പരിധി ഉണ്ടെന്നു വരുന്നു. ഈ ദ്രവ്യമാനപരിധി 1.44 M๏ (സൂര്യന്റെ ദ്രവ്യമാനത്തിന്റെ 1.44 ഇരട്ടി വരെ) ആയിരിക്കും എന്ന് പ്രശസ്ത ജ്യോതിർ ഭൌതീക ശാസ്ത്രജ്ഞനായ സുബ്രഹ്മണ്യം ചന്ദ്രശേഖർ കണക്കുക്കൂട്ടലിലൂടെ കണ്ടെത്തി. അതിനാൽ ഈ ദ്രവ്യമന പരിധിയ്ക്ക് ചന്ദ്രശേഖർ സീമ (Chandrasekhar limit) എന്നു പറയുന്നു. ഇതനുസരിച്ച് ദ്രവ്യമാനം 1.44 M๏ വരെയുള്ള നക്ഷത്രങ്ങളേ വെള്ളക്കുള്ളന്മാർ ആയി മാറൂ. നമ്മുടെ സൂര്യന്റെ ദ്രവ്യമാനം ഈ പരിധിക്ക് ഉള്ളിലായത് കൊണ്ട് സൂര്യനും അതിന്റെ അന്ത്യദശയിൽ ഒരു വെള്ളക്കുള്ളൻ ആയി മാറും.
വെള്ളക്കുള്ളന്മാരുടെ കണ്ടെത്തൽ
ശാസ്ത്രജ്ഞന്മാർ ഇതു വരെ കണ്ടെത്തിയ വെള്ളക്കുള്ളന്മാരുടെ ഉപരിതല താപനില 5000 K മുതൽ 70,000 K വരെ നീളുന്ന വിപുലമായ ഒരു പരിധിയിൽ ആണ്. എങ്കിലും കൂടുതൽ എണ്ണത്തിന്റേയും ഉപരിതല താപനില 6000 K ന്റേയും 8 000 K ന്റേയും ഇടയിൽ ആണ്. ഉപരിതല താപനില ഇത്രയും വരുന്ന നക്ഷത്രങ്ങളുടെ സ്പെട്രൽ ക്ലാസ് F, G യും ആയിരിക്കും. ഈ സ്പെട്രൽ ക്ലാസ്സിൽ ഉള്ള വസ്തു വെളുത്ത പ്രഭയോടെ ആണ് പ്രകാശിക്കുക. അതു കൊണ്ടാണ് ഇത്തരം നക്ഷത്രങ്ങൾക്ക് വെളുത്തക്കുള്ളൻ എന്ന പേരു വീണത്. മാത്രമല്ല ആദ്യകാലത്ത് കണ്ടെത്തിയ ഭൂരിഭാഗം വെള്ളക്കുള്ളന്മാരുടേയും ഉപരിതല താപനില ഈ പരിധിയിൽ ആയിരുന്നു. പക്ഷേ പിന്നീട് കണ്ടെത്തിയ പല വെള്ളക്കുള്ളന്മാരും നിറം വെള്ള മാത്രം ആയിരുന്നില്ല.
ആയിരത്തിലധികം വെള്ളക്കുന്മാരെ കണ്ടെത്താൻ കഴിഞ്ഞിട്ടുണ്ടെങ്കിലും ഭൂമിയിൽ നിന്നും 70 പ്രകാശവർഷത്തിനുള്ളിൽ സ്ഥിതി ചെയ്യുന്ന 25 എണ്ണം മാത്രമേ ഉള്ളു. അവയുടെ ദൂരം പാരലാക്സ് രീതി ഉപയോഗിച്ച് കണ്ടെത്തിയിട്ടുണ്ട്. മറ്റുള്ളവയുടെ കൃത്യമായ അളവ് ലഭ്യമല്ല.[1]
വെള്ളക്കുള്ളനിലെ പദാർത്ഥം
വെള്ളക്കുള്ളന്റെ അകത്തുള്ള പദാർത്ഥം degenerate ആയ ഇലക്ട്രോണുകളുടെ കടലിൽ ഒഴുകി നടക്കുന്ന അയണീകൃത കാർബൺ ആയിരിക്കും. ഇപ്രകാരം വെള്ളകുള്ളനായി തീർന്ന ഒരു നക്ഷത്രം തണുക്കുമ്പോൾ അതിലെ കണികകളുടെ ചലനവേഗത കുറയുകയും കണികകൾ തമ്മിലുള്ള ഇലക്ട്രോണിക ബലം താപ ബലത്തെ അതി ജീവിക്കുകയും ചെയ്യും. അതോടെ അയോണുകളുടെ സ്വതന്ത്ര ചലനം അവസാനിക്കുന്നു. ചില ശാസ്ത്രജ്ഞന്മാരുടെ അഭിപ്രായത്തിൽ കാലക്രമേണ ഈ അയോണുകൾ ഒരു ക്രിസ്റ്റലിൽ ഉള്ളതു പോലെ ക്രമമായി അടുക്കപ്പെടുന്നു. degenerate ആയ ഇലക്ട്രോണുകൾ ഈ ക്രിസ്റ്റലിൽ സ്വതന്ത്രമായി ചലിക്കുന്നു. വജ്രം ക്രിസ്റ്റൽ രൂപത്തിലുള്ള കാർബൺ ആണെന്ന് നമുക്കറിയാമല്ലോ. ചുരുക്കത്തിൽ കാർബൺ കാമ്പ് ഉള്ള ഒരു തണുത്ത വെള്ളക്കുള്ളൻ ഒരു അതീഭീമ വജ്രത്തോട് സദൃശം ആയിരിക്കും.
വെള്ളക്കുള്ളന്റെ പരിണാമം
മാറ്റത്തിനു വിധേയമാവാതെ നിലനിൽക്കുന്ന ഒരു അവസ്ഥയല്ല വെള്ളക്കുള്ളന്റേത്. കൂടുതൽ പദാർത്ഥങ്ങൾ ഈ അവസ്ഥയിലുള്ള നക്ഷത്രങ്ങളിൽ നിക്ഷേപിച്ചാൽ വലിപ്പം കൂടുകയല്ല കുറയുകയാണ് ചെയ്യുന്നത്. അവയുടെ സാന്ദ്രത ഭൂമിയെ അപേക്ഷിച്ച് 5000 മുതൽ 5 കോടി മടങ്ങുവരെ വർദ്ധിക്കുന്നു. ഞരുങ്ങൽ മൂലം റേഡിയേഷൻ വർദ്ധിക്കുകയും നീല കലർന്ന വെള്ളയോ നീലയോ നിറത്തിൽ ഇവ പ്രത്യക്ഷമാവുകയും ചെയ്യും. അവസാനം ഊർജ്ജം നഷ്ടപ്പെട്ടു വെള്ള നിറവും ക്രമേണ വെള്ള, മഞ്ഞ, ഓറഞ്ച്, ചുവപ്പ് നിറങ്ങളിലെത്തുന്നു. പിന്നീട് കറുത്ത കുള്ളൻമാരിലേക്ക് മാറുന്നു. ഈ അവസ്ഥയിൽ അതിനടുത്ത് എത്തിപ്പെടുന്ന നക്ഷത്രാദിയായ ആകാശ പദാർത്ഥങ്ങൾ വലിച്ചെടുത്ത് ഒരു പൊട്ടിത്തെറിയോ അല്ലെങ്കിൽ ന്യൂട്രോൺ നക്ഷത്രം എന്ന അവസ്ഥയിലേക്കോ ഇതു മാറുന്നു.
കൂടുതൽ വായനയ്ക്ക്
പൊതുവായതു
- White Dwarf Stars, Steven D. Kawaler, in Stellar remnants, S. D. Kawaler, I. Novikov, and G. Srinivasan, edited by Georges Meynet and Daniel Schaerer, Berlin: Springer, 1997. Lecture notes for Saas-Fee advanced course number 25. ISBN 3-540-61520-2.
ഭൗതികശാസ്ത്രം
- Black holes, white dwarfs, and neutron stars: the physics of compact objects, Stuart L. Shapiro and Saul A. Teukolsky, New York: Wiley, 1983. ISBN 0-471-87317-9.
- Physics of white dwarf stars, D. Koester and G. Chanmugam, Reports on Progress in Physics 53 (1990), pp. 837–915.
- White dwarf stars and the Chandrasekhar limit, Dave Gentile, Master's thesis, DePaul University, 1995.
- Estimating Stellar Parameters from Energy Equipartition, sciencebits.com. Discusses how to find mass-radius relations and mass limits for white dwarfs using simple energy arguments.
Variability
- Asteroseismology of white dwarf stars, D. E. Winget, Journal of Physics: Condensed Matter 10, #49 (December 14, 1998), pp. 11247–11261. DOI 10.1088/0953-8984/10/49/014.
Magnetic field
- Magnetism in Isolated and Binary White Dwarfs, D. T. Wickramasinghe and Lilia Ferrario, Publications of the Astronomical Society of the Pacific 112, #773 (July 2000), pp. 873–924.
Frequency
- White Dwarfs and Dark Matter, B. K. Gibson and C. Flynn, Science 292, #5525 (June 22, 2001), p. 2211. DOI 10.1126/science.292.5525.2211a.
Observational
- Testing the White Dwarf Mass-Radius Relation with HIPPARCOS, J. L. Provencal, H. L. Shipman, Erik Hog, P. Thejll, The Astrophysical Journal 494 (February 20, 1998), pp. 759–767.
- Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey, Evalyn Gates, Geza Gyuk, Hugh C. Harris, Mark Subbarao, Scott Anderson, S. J. Kleinman, James Liebert, Howard Brewington, J. Brinkmann, Michael Harvanek, Jurek Krzesinski, Don Q. Lamb, Dan Long, Eric H. Neilsen, Jr., Peter R. Newman, Atsuko Nitta, and Stephanie A. Snedden, The Astrophysical Journal 612, #2 (September 2004), pp. L129–L132.
- Villanova University White Dwarf Catalogue WD Archived 2007-08-24 at the Wayback Machine., G. P.McCook and E. M. Sion.
- Dufour, P. (2007). "Rare White dwarf stars with carbon atmospheres". Nature. 450: 522–524. Retrieved 2008-01-02.
{cite journal}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)
അവലംബം
- ↑ നക്ഷത്രപരിണാമവും തമോഗർത്തങ്ങളും-ഡോ. എം.എൻ. ശ്രീധരൻ നായർ (കേരളഭാഷാ ഇൻസ്റ്റിറ്റ്യൂട്ട്-2011 ജൂൺ) ISBN 817638971-4
നക്ഷത്രം |
|
---|---|
പ്രാങ് നക്ഷത്രം | തന്മാത്രാ മേഘം · Bok globule · Young stellar object · Hayashi track · Hayashi limit · Henyey track · Protostars · T Tauri star · Herbig Ae/Be stars · തവിട്ടുകുള്ളൻ |
പരിണാമം | Main sequence · ചരനക്ഷത്രം · ചുവപ്പുകുള്ളൻ · ചുവപ്പുഭീമൻ · Horizontal branch · Asymptotic giant branch · Protoplanetary nebula · പ്ലാനെറ്ററി നെബുല · Wolf-Rayet star · സൂപ്പർനോവ |
ഗുണങ്ങൾ | നക്ഷത്രങ്ങളുടെ വർഗ്ഗീകരണം · സ്പെക്ട്രൽ വർഗ്ഗീകരണം · UBV color · Nucleosynthesis · Effective temperature · Metallicity · Rotation · Magnetic field · Microturbulence · Planetary system · Radial velocity · Proper motion · ദൃഗ്ഭ്രംശം · Space velocity |
ഘടന | കാമ്പ് · Convection zone · Radiation zone · പ്രഭാമണ്ഡലം · Chromosphere · കൊറോണ · Stellar wind · Stellar wind bubble |
അവശേഷിപ്പുകൾ | വെള്ളക്കുള്ളൻ · ന്യൂട്രോൺ നക്ഷത്രം · പൾസാർ · മാഗ്നറ്റാർ · Quark star · Exotic star · തമോദ്വാരം |