Grafiek van de Logarithmische integraal
In de wiskunde is de logaritmische integraal of integraal logaritme
een speciale functie. De logaritmische integraal komt voor bij problemen in de natuurkunde en heeft getaltheoretische betekenis, aangezien hij voorkomt in de priemgetalstelling als een schatting van het aantal priemgetallen kleiner dan een gegeven waarde.
Definitie
De logarithmische integraal is voor reële
gedefinieerd als de integraal:
![{\displaystyle \mathrm {li} (x)=\int _{0}^{x}{\frac {\mathrm {d} t}{\ln(t)}~,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/823785568ff14c17ca5b3a8dcdf2fe4296a6fb4f)
waarin
de natuurlijke logaritme is.
De integrand heeft een singulariteit voor
, en voor
moet de integraal opgevat worden als een
Cauchy-hoofdwaarde:
![{\displaystyle \mathrm {li} (x)=\lim _{\varepsilon \downarrow 0}\left(\int _{0}^{1-\varepsilon }{\frac {\rm {d}t}{\ln t}+\int _{1+\varepsilon }^{x}{\frac {\rm {d}t}{\ln t}\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c40a2f93613cdec8a450be3de810791f94699454)
De logaritmische integraal is nauw verbonden met de exponentiële integraal
:
.
Uit deze relatie kan een reeksontwikkeling voor de logaritmische integraal verkregen worden:
![{\displaystyle \mathrm {li} (x)=\gamma +\ln |\ln x|+\sum _{k=1}^{\infty }{\frac {(\ln x)^{k}{k\cdot k!},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/408e7ba949670bc5295a2eef47065b15959aea14)
waarin
de constante van Euler-Mascheroni is.
Verschoven logarithmische integraal
Een verschoven versie van de logarithmische integraal wordt wel aangeduid als de logarithmische integraal van Euler, voor
gedefinieerd als:
![{\displaystyle \mathrm {Li} (x)=\mathrm {li} (x)-\mathrm {li} (2),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/562180f6859536f8f7f8a8f82f12cb0b90c4b96c)
of als integraal:
![{\displaystyle \mathrm {Li} (x)=\int _{2}^{x}{\frac {\rm {d}t}{\ln t}~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4d8a08380aab3f92491456048278ef21e82bed5b)
Deze functie is een zeer goede benadering van de priemgetal-telfunctie
, die het aantal priemgetallen voorstelt kleiner dan het getal