Inverso multiplicativo

A função real de variável real f(x)=1/x asoccia cada x não-nulo com seu inverso multiplicativo.

Em matemática, o inverso multiplicativo de um número x é o número y que, multiplicado por x, gera a identidade multiplicativa. Note-se que estamos falando de qualquer operação binária que tenha o nome de multiplicação, que não precisa ser comutativa, mas deve ter elemento neutro.

No caso de uma operação não comutativa, o inverso deve ser tal que .

Quando este inverso é único (por exemplo, o inverso multiplicativo de um número real), ele é representado por:

ou

ou

O termo "recíproco" era de uso comum pelo menos até a terceira edição de "Encyclopædia Britannica" (1797) para descrever dois números cujo produto é 1; As quantidades geométricas em proporção inversa são descritas como reciprocall em uma tradução 1570 de Euclid Elements .[1]

Unicidade

As condições necessárias para que se possa definir o inverso multiplicativo são um conjunto S, uma operação binária * definida como uma função e a existência de um elemento neutro 1 desta operação, definido de forma que .

Estas são as definições de um grupóide com elemento neutro.

Por exemplo, para a operação binária × definida no conjunto {1, a, b, c} de forma que 1 seja o elemento neutro, a × a = 1, a × b = 1, a × c = a, b × a = 1, b × b = b, b × c = b, c × a = c, c × b = 1 e c × c = c, temos que a é um elemento inverso de a, b também é um elemento inverso de a e a é um elemento inverso de b, e não existe elemento inverso de c. Note-se que no caso geral, o elemento inverso não precisa existir nem ser único (devia se chamar de um elemento inverso, em vez de o elemento inverso).

Quando a operação é associativa (ou seja, (S, *) é um monóide), pode-se mostrar que o inverso, se existe, é único:

Seja x um elemento de S, e y e z elementos inversos de x. Então, pela associatividade:
Portanto, pelas definições de elemento inverso e de elemento neutro:

Inverso multiplicativo de alguns números

número valor inverso
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Em forma de divisão

O resultado de é o inverso do resultado de . Ou seja, para descobrir o valor inverso de um número que é resultado de uma divisão, é só trocar o dividendo e o divisor de lugar. Exemplos:

  • Se , para descobrir o valor inverso de 4, é só trocar o dividendo e o divisor de lugar, que vai ser . Portanto, 0,25 é o valor inverso de 4.
  • Se , para descobrir o valor inverso de 5, é só trocar o dividendo e o divisor de lugar, que vai ser . Portanto, 0,2 é o valor inverso de 5.
  • Se , para descobrir o valor inverso de 8, é só trocar o dividendo e o divisor de lugar, que vai ser . Portanto, 0,125 é o valor inverso de 8.
  • Se , para descobrir o valor inverso de 10, é só trocar o dividendo e o divisor de lugar, que vai ser . Portanto, 0,1 é o valor inverso de 10.

Em forma de potenciação

O resultado de é o inverso do resultado de . Ou seja, para descobrir o valor inverso de um número que é resultado de uma potenciação, é só conservar a base e trocar o expoente de positivo para negativo, ou de negativo para positivo. Exemplos:

  • Se , para descobrir o valor inverso de 4, é só trocar o expoente positivo para negativo, que vai ser . Portanto, 0,25 é o valor inverso de 4.
  • Se , para descobrir o valor inverso de 27, é só trocar o expoente positivo para negativo, que vai ser . Portanto, a dízima periódica é o valor inverso de 27.
  • Se , para descobrir o valor inverso de 3125, é só trocar o expoente positivo para negativo, que vai ser . Portanto, 0,00032 é o valor inverso de 3125.
  • Se , para descobrir o valor inverso de 1000000, é só trocar o expoente positivo para negativo, que vai ser . Portanto, 0,000001 é o valor inverso de 1000000.

Em forma de radiciação

O resultado de é o inverso do resultado de . Ou seja, para descobrir o valor inverso de um número que é resultado de uma potenciação, é só conservar o radicando e trocar o índice de positivo para negativo, ou de negativo para positivo. Exemplos:

  • Se , para descobrir o valor inverso de 12, é só índice o expoente positivo para negativo, que vai ser . Portanto, a dízima periódica é o valor inverso de 12.
  • Se , para descobrir o valor inverso de 8, é só trocar o índice positivo para negativo, que vai ser . Portanto, 0,125 é o valor inverso de 8.
  • Se , para descobrir o valor inverso de 7, é só trocar o índice positivo para negativo, que vai ser . Portanto, a dízima periódica é o valor inverso de 7.
  • Se , para descobrir o valor inverso de 5, é só trocar o índice positivo para negativo, que vai ser . Portanto, 0,2 é o valor inverso de 5.

Referências

  1. "In equall Parallelipipedons the bases are reciprokall to their altitudes". OED "Reciprocal" §3a. Sir Henry Billingsley translation of Elements XI, 34.