Ковар

Кова́р — прецизионный сплав с заданным коэффициентом линейного теплового расширения, обычно состоящий из 29 % никеля (Ni), 17 % кобальта (Co) и 54 % железа (Fe) с примесями кремния, углерода, марганца.

Имеет коэффициент теплового расширения близкий в широком диапазоне температур к коэффициенту теплового расширения боросиликатного стекла, используемого для изготовления баллонов ламп накаливания, люминесцентных ламп, электровакуумных приборов, металлостеклянных изоляторов и металлокерамических корпусов микросхем.

Отличается высокой адгезией к расплавленному стеклу, поэтому широко используется для изготовления проходящих через стекло электрических выводов вакуумных, газонаполненных и герметизированных приборов и различных ламп.

Название сплава «ковар» является зарегистрированной торговой маркой фирмы «Carpenter Technology Corporation CRS Holdings»[1]. В СССР и России, в зависимости от технологии изготовления, имеет обозначения "НК29" и "НК29-ВИ"[2].

Свойства

Свойство После
спекания
После
горячего
прессования
Плотность, г/см3 8,0 8,35
Температура плавления, °C 1450
Удельная теплоёмкость Дж/(кг•K) 460
Теплопроводность, Вт/(К•м) 17; (16,7; 17,3; 19)
Твердость
по Виккерсу

(нагрузка 1 кгс)
160 150
Предел прочности
на разрыв, МПа (кгс)
650 (65)
Относительное удлинение
при разрыве, %
30
Коэффициент Пуассона 0,32—0,42; 0,317[3]
Модуль Юнга, ГПа 138—196
Предел упругости, МПа 270
Удельное электрическое
сопротивление
, Ом•мм2
0,49

Представляет собой мягкий, пластичный металл серебристо-белого цвета.

Во влажной среде сплав подвержен коррозии, требует защитных антикоррозийных покрытий. Обычно, с этой целью изготовленные из сплава выводы приборов никелируют.

Сплав хорошо лудится оловянно-свинцовыми припоями. При спайке со стеклом образует надёжное вакуумно-плотное сцепление. Сквозь прозрачное бесцветное стекло видно, что проволока, изготовленная из сплава, в спае имеет медно-красный цвет, поэтому иногда ошибочно считают, что проволока изготовлена из меди.

Модуль Юнга и коэффициент Пуассона зависят от термической обработки сплава и его деформации, — после отжига или в нагартованном состоянии: модуль Юнга от 138 МПа до 196 МПа, коэффициент Пуассона от 0,317 до 0,42.

Ферромагнитные свойства[4]

Температурный коэффициент линейного расширения

Температурный коэффициент линейного расширения сплава (ТКЛР) хорошо согласован с ТКЛР некоторых специальных марок стекла. Например, стекла марок С49-2, С51-1, С51-2 имеют ТКЛР в диапазоне температур от 20 до 300 °C 5,2·10−6 1/К[5].

При температуре в точке Кюри в сплаве происходит фазовый переход — до этой температуры ТКЛР имеет значение около 5,5·10−6 1/К, а свыше точки Кюри около 9·10−6 1/К. Этот излом зависимости ТКЛР от температуры называют точкой перегиба. Значение температуры точки перегиба нормируется стандартами на сплав[4]. Для сплава НК29 точка перегиба должна быть 420 °C.

ТКЛР сплавов 29НК и 29НК-ВИ в виде отожжённой ленты приведён в таблице.

Зависимость температурного коэффициента линейного расширения (ТКЛР) в диапазоне от 20 °C до указанного в таблице[4]
Температура, °C -100 -80 -60 -40 -20 100 200 300 400 500 600 700 800
Температурный коэффициент линейного расширения
сплавов 29НК и 29НК-ВИ, ×10−6 1/К
7,6 7,5 7,4 7,4 7,1 6,3 5,9 5,2 5,0 6,4 7,7 9,0 9,8

Химический состав

В СССР и России химический состав прецизионных сплавов устанавливает ГОСТ 10994—74 «Сплавы прецизионные. Марки». Например, сплав марки 29НК имеет следующий состав в массовых %:

Железо Никель Кобальт Углерод Кремний Марганец Фосфор Сера Хром Медь Алюминий Титан
остальное 29 17 не более
0,03
не более
0,3
не более
0,4 %
не более
0,015
не более
0,015
не более
0,1
не более
0,2
не более
0,2
не более
0,1

Иные химические элементы, кроме железа, никеля и кобальта нежелательны в составе сплава, так как ухудшают его свойства.

Производство

Сплав выплавляется в дуговых электропечах. Легирующие компоненты добавляются в виде ферросплавов. В процессе выплавки тщательно контролируется химический состав сплава, поэтому этот сплав относят к прецизионным сплавам.

После выплавки слитки сплава подвергают прокатке, волочению для получения проволоки, прутков разного сечения, лент, труб и других профилей.

Перед применения для спайки со стеклом или керамикой заготовки из сплава подвергают отжигу в атмосфере влажного водорода при температуре 800—900 °C и затем создают на поверхности окисную плёнку нужной толщины нагревом в воздухе с заданной длительностью до контролируемой температуры. Окисная плёнка состоит из оксидов кобальта и никеля с незначительной примесью оксида железа, так как образующийся при окислении оксид железа восстанавливается кобальтом. Окисная плёнка существенно улучшает адгезию к расплавленному стеклу[3][6].

Применение

Сейчас основной потребитель сплава (после вытеснения электровакуумных приборов полупроводниковыми приборами) — производство ламп накаливания и люминесцентных осветительных ламп, полупроводниковых приборов в металлостеклянных и металлокерамических корпусах, герметизированных электрических разъёмов со стеклянными изоляторами, где изготовленная из сплава проволока или лента используется для герметичных токовыводов, проходящих через стекло или керамику.

В меньшей мере сплав используется для изготовления выводов микросхем (даже необязательно микросхем в металлостеклянных или металлокерамических корпусах, также и в пластиковых). Это применение сплава для выводов микросхем в пластиковых корпусах и других применений обусловлено относительной дешевизной сплава, доступностью и хорошей технологичностью — сплав и в холодном состоянии пластичен, хорошо прокатывается, вытягивается, штампуется с глубокой вытяжкой, сваривается, паяется оловянно-свинцовыми и твёрдыми припоями.

См. также

Некоторые сплавы с нормируемым ТКЛР:

Примечания

  1. USPTO United States Patent and Trademark Office. Trademark Assignment Abstract (1993). Дата обращения: 18 июня 2014. Архивировано 4 марта 2016 года.
  2. ГОСТ 10994. Сплавы прецизионные. Марки.
  3. 1 2 Espi Metels. Kovar. Дата обращения: 1 мая 2019. Архивировано 1 мая 2019 года.
  4. 1 2 3 ГОСТ 14080-78. Лента из прецизионных сплавов с заданным температурным коэффициентом линейного расширения. Технические условия. Дата обращения: 1 мая 2019. Архивировано 1 мая 2019 года.
  5. Температурный коэффициент линейного расширения некоторых марок стекла при различных температурах. Дата обращения: 1 мая 2019. Архивировано 1 мая 2019 года.
  6. High Temp. Kovardata. Дата обращения: 1 мая 2019. Архивировано 10 октября 2018 года.

Ссылки