Оксид азота(II)
Оксид азота(II) | |||
---|---|---|---|
| |||
Общие | |||
Систематическое наименование |
Оксид азота(II) | ||
Хим. формула | NO | ||
Физические свойства | |||
Состояние | бесцветный газ | ||
Молярная масса | 30,0061 г/моль | ||
Плотность | газ: 1,3402 кг/м³ | ||
Энергия ионизации | 9,27 ± 0,01 эВ[2] и 9,26 эВ[3] | ||
Термические свойства | |||
Температура | |||
• плавления | −163,6 °C | ||
• кипения | −151,7 °C | ||
• разложения | выше +700 °C | ||
Энтальпия | |||
• образования | 81 кДж/моль | ||
Давление пара | 34,2 ± 0,1 атм[2] | ||
Химические свойства | |||
Растворимость | |||
• в воде | 0,01 г/100 мл | ||
Структура | |||
Дипольный момент | 5,3E−31 Кл·м[3] | ||
Классификация | |||
Рег. номер CAS | [10102-43-9] | ||
PubChem | 145068 | ||
Рег. номер EINECS | 233-271-0 | ||
SMILES | |||
InChI | |||
RTECS | QX0525000 | ||
ChEBI | 16480 | ||
Номер ООН | 1660 | ||
ChemSpider | 127983 | ||
Безопасность | |||
Пиктограммы СГС | |||
NFPA 704 | |||
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |||
Медиафайлы на Викискладе |
Окси́д азо́та(II) (мон(о)оксид азота, окись азота, нитрозил-радикал) NO — несолеобразующий оксид азота. Молекула года (1992)[4].
Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N2O2. Это непрочные соединения с ΔH° димеризации около 17 кДж/моль. Жидкий оксид азота(II) на 25 % состоит из молекул N2O2, а твёрдый целиком состоит из них.
Получение
Оксид азота(II) — единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200—1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах (тепловой эффект реакции −180,9 кДж):
и тотчас же реагирует с кислородом:
- .
При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.
В лаборатории его обычно получают взаимодействием 31 % HNO3 с некоторыми металлами, например, с медью:
- .
Более чистый, не загрязнённый примесями NO можно получить по реакциям
- ,
- .
Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Rh, Cr2O3 (как катализаторов):
- .
Получение NO является одной из стадий получения азотной кислоты.
Физические свойства
В нормальных условиях NO представляет собой бесцветный газ. Плохо растворим в воде. Имеет плотность 1,3402 кг/м³[5]. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.
Химические свойства
При комнатной температуре и атмосферном давлении происходит окисление NO кислородом воздуха:
- .
В результате смесь газов приобретает коричневый цвет.
Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя с образованием нитрозилхлорида:
- .
Это свойство проявляется за счет неспаренного электрона на π-разрыхляющей орбитали. Молекула оксида азота(II) легко отдает этот электрон.
Исходя из электронного строения молекулы-радикала, оксид азота(II) способен запускать радикально-цепные реакции.
В присутствии более сильных восстановителей NO проявляет окислительные свойства:
- .
При температуре свыше +700 °C в присутствии оксида бария разлагается:
.
С водой не реагирует, является несолеобразующим оксидом.
Физиологическое действие
Токсичность
Оксид азота(II) — ядовитый газ с удушающим действием.
Действие на живые организмы
Оксид азота(II) является одним из немногих известных газотрансмиттеров и, кроме того, является также химически высокореактивным свободным радикалом, способным выступать как в роли окислителя, так и в роли восстановителя. Оксид азота(II) является ключевым вторичным посредником в организмах позвоночных и играет важную роль в межклеточной и внутриклеточной передаче сигнала и, как следствие, во множестве биологических процессов[6]. Известно, что оксид азота(II) производится практически всеми типами живых организмов, от бактерий, грибов и растений до клеток животных[7].
Оксид азота(II), первоначально известный под именем эндотелиального сосудорасширяющего фактора (химическая природа которого тогда ещё была не известна) синтезируется в организме из аргинина при участии кислорода и НАДФ ферментом синтазой оксида азота. Восстановление неорганических нитратов также может быть использовано для производства организмом эндогенного оксида азота(II). Эндотелий кровеносных сосудов использует оксид азота(II) в качестве сигнала окружающим гладкомышечным клеткам расслабиться, что приводит к вазодилатации и увеличению кровотока. Оксид азота(II) является высокореактивным свободным радикалом со временем жизни порядка нескольких секунд, но при этом обладает высокой способностью к проникновению сквозь биологические мембраны. Это делает оксид азота(II) идеальной сигнальной молекулой для кратковременного аутокринного (внутри клетки) или паракринного (между близко расположенными или соседними клетками) обмена сигналами[8].
Независимо от активности синтазы оксида азота(II), существует и другой путь биосинтеза этого вещества, так называемый нитрат-нитрит-оксидный путь, состоящий в последовательном восстановлении пищевых нитратов и нитритов, получаемых из растительной пищи[9]. Было показано, что богатые нитратами овощи, в особенности листовая зелень, такая, как шпинат и руккола, а также свёкла, способны повышать уровень эндогенного оксида азота(II) и обеспечивать защиту миокарда от ишемии, а также снижать артериальное давление у лиц с предрасположенностью к артериальной гипертензии или начинающимся развитием АГ[10][11]. Для того, чтобы организм мог производить оксид азота(II) из нитратов пищи по нитрат-нитрит-оксидному пути, сначала обязательно должно произойти восстановление нитратов до нитритов с помощью сапрофитных бактерий (бактерий-комменсалов), которые обитают во рту[12]. Мониторинг содержания оксида азота(II) в слюне позволяет обнаружить биотрансформацию растительных нитратов в нитриты и окись азота. Повышение уровня оксида азота(II) в слюне наблюдается при диетах, богатых листовой зеленью. В свою очередь, листовая зелень — часто важнейший компонент многих антигипертензивных и «сердечных» диет, разработанных для лечения гипертонической болезни, ишемической болезни сердца, сердечной недостаточности[13].
Выработка оксида азота(II) повышена у людей, живущих в горах, особенно на больших высотах. Это способствует приспособлению организма к условиям пониженного парциального давления кислорода и уменьшению вероятности гипоксии за счёт увеличения кровотока как в лёгких, так и в периферических тканях. Известные эффекты оксида азота(II) включают в себя не только вазодилатацию, но и участие в нейротрансмиссии в качестве газотрансмиттера, и активацию роста волос[14], и образование реактивных промежуточных продуктов обмена, и участие в процессе эрекции пениса (благодаря способности окиси азота расширять сосуды полового члена). Фармакологически активные нитраты, такие, как нитроглицерин, амилнитрит, нитропруссид натрия, реализуют своё вазодилатирующее, антиангинальное (антиишемическое), гипотензивное и спазмолитическое действие благодаря тому, что из них в организме образуется оксид азота(II). Вазодилатирующее гипотензивное лекарство миноксидил содержит остаток NO и может работать, кроме всего прочего, ещё и как агонист NO. Аналогично, силденафил и подобные ему препараты способствуют улучшению эрекции преимущественно за счёт того, что усиливают работу связанного с NO сигнального каскада в половом члене.
Оксид азота(II) способствует поддержанию гомеостаза сосудов, вызывая расслабление гладких мышц стенок сосудов и угнетая их рост и утолщение интимы сосудов (гипертензивное ремоделирование сосудов), а также угнетая адгезию и агрегацию тромбоцитов и адгезию лейкоцитов к эндотелию сосудов. У больных с атеросклерозом сосудов, сахарным диабетом или гипертензией часто имеются признаки нарушения обмена оксида азота(II) или нарушения во внутриклеточных каскадах передачи сигнала от оксида азота(II)[15].
Было также показано, что высокое потребление соли снижает образование оксида азота(II) у больных с гипертонической болезнью, хотя биодоступность окиси азота не меняется, остаётся прежней[16].
Оксид азота(II) также образуется в процессе фагоцитоза такими способными к фагоцитозу клетками, как моноциты, макрофаги, нейтрофилы, как часть иммунного ответа на вторжение чужеродных микроорганизмов (бактерий, грибков и др.)[17]. Клетки, способные к фагоцитозу, содержат индуцируемую синтазу оксида азота (iNOS), которая активируется γ-интерфероном или сочетанием фактора некроза опухоли со вторым сигналом воспаления[18][19][20]. С другой стороны, β-трансформирующий фактор роста (TGF-β) оказывает сильное угнетающее действие на активность iNOS и биосинтез оксида азота(II) фагоцитами. Интерлейкины 4 и 10 оказывают слабое угнетающее действие на активность iNOS и биосинтез оксида азота соответствующими клетками. Таким образом, иммунная система организма обладает способностью регулировать активность iNOS и доступный фагоцитам арсенал средств иммунного ответа, что играет роль в регуляции процессов воспаления и силы иммунных реакций[21]. Оксид азота(II) секретируется фагоцитами в процессе иммунного ответа в качестве одного из свободных радикалов и является высокотоксичным для бактерий и внутриклеточных паразитов, включая лейшманий[22] и малярийных плазмодиев[23][24][25]. Механизм бактерицидного, противогрибкового и антипротозойного действия оксида азота(II) включает в себя повреждение ДНК бактерий, грибков и простейших[26][27][28] и повреждение железосодержащих белков с разрушением комплексов железа с серой и образованием нитрозилов железа[29].
В ответ на это многие патогенные бактерии, грибки и простейшие эволюционно развили механизмы устойчивости к образующемуся в процессе фагоцитоза оксиду азота(II) или механизмы его быстрого обезвреживания[30]. Поскольку повышение образования эндогенного оксида азота является одним из маркеров воспаления и поскольку эндогенный оксид азота(II) может оказывать провоспалительное действие при таких состояниях, как бронхиальная астма и бронхообструктивные заболевания, в практической медицине наблюдается повышенный интерес к возможному использованию анализа на содержание оксида азота(II) в выдыхаемом воздухе в качестве простого дыхательного теста при заболеваниях дыхательных путей, сопровождающихся их воспалением. Пониженные уровни эндогенного оксида азота(II) в выдыхаемом воздухе были обнаружены у курильщиков и у велосипедистов, подвергающихся воздействию загрязнения воздуха. В то же время в других популяциях (то есть не среди велосипедистов) с воздействием загрязнения воздуха ассоциировалось повышение уровня эндогенного оксида азота(II) в выдыхаемом воздухе[31].
Эндогенный оксид азота(II) может привносить свой вклад в повреждение тканей при ишемии и последующей реперфузии, поскольку в процессе реперфузии может образовываться избыточное количество оксида азота(II), который может реагировать с супероксидом или пероксидом водорода и образовывать сильный и токсичный окислитель, повреждающий ткани — пероксинитрит. Напротив, при отравлении паракватом вдыхание оксида азота(II) способствует повышению выживаемости и лучшему восстановлению больных, поскольку паракват вызывает образование в лёгких больших количеств супероксида и пероксида водорода, снижение биодоступности NO вследствие его связывания с супероксидом и образования пероксинитрита и угнетение активности синтазы оксида азота(II).
У растений эндогенный оксид азота(II) может производиться одним из четырёх способов:
- При помощи аргинин-зависимой синтазы оксида азота(II)[32][33][34] (хотя существование у растений прямых гомологов синтазы оксида азота(II) животных всё ещё является предметом дискуссий и признаётся не всеми специалистами)[35];
- При помощи находящейся в плазматической мембране растительных клеток нитрат-редуктазы, восстанавливающей усваиваемые из почвы нитраты и нитриты;
- При помощи электронного транспорта, происходящего в митохондриях;
- При помощи неферментативного окисления аммиака или неферментативного восстановления нитратов и нитритов.
У растений эндогенный оксид азота(II) также является сигнальной молекулой (газотрансмиттером), способствует снижению или предотвращению оксидативного стресса клеток, а также играет роль в защите растений от патогенных микроорганизмов и грибков. Было показано, что воздействие низких концентраций экзогенного оксида азота(II) на срезанные цветы и другие растения увеличивает продолжительность времени до их увядания, пожелтения и осыпания листьев и лепестков[36].
Два важнейших механизма, при помощи которых эндогенный оксид азота(II) проявляет своё биологическое действие на клетки, органы и ткани — это S-нитрозилирование тиоловых соединений (включая тиоловые группы серосодержащих аминокислот, таких, как цистеин) и нитрозилирование ионов переходных металлов. S-нитрозилирование означает обратимое преобразование тиоловых групп (например, цистеиновых остатков в составе молекул белков) в S-нитрозотиолы (RSNO). S-нитрозилирование является важным механизмом динамической, обратимой посттрансляционной модификации и регуляции функций многих, если не всех, основных классов белков[37]. Нитрозилирование ионов переходных металлов подразумевает связывание NO с ионом переходного металла, такого, как железо, медь, цинк, хром, кобальт, марганец, в том числе с ионами переходных металлов в составе простетических групп или активных каталитических центров металлоферментов. В этой роли NO является нитрозильным лигандом. Типичные случаи нитрозилирования ионов переходных металлов включают в себя нитрозилирование гем-содержащих белков, таких, как цитохром, гемоглобин, миоглобин, что приводит к нарушению функции белка (в частности, невозможности гемоглобина выполнять свою транспортную функцию, или инактивации фермента). Особенно важную роль играет нитрозилирование двухвалентного железа, поскольку связывание нитрозильного лиганда с ионом двухвалентного железа особенно сильное и приводит к образованию очень прочной связи. Гемоглобин является важным примером белка, функция которого может изменяться под влиянием NO обоими способами: NO может как непосредственно связываться с железом в составе гема в реакции нитрозилирования, так и образовывать S-нитрозотиолы при S-нитрозилировании серосодержащих аминокислот в составе гемоглобина[38].
Таким образом, существует несколько механизмов, при помощи которых эндогенный оксид азота(II) оказывает двоякое влияние на биологические процессы в живых организмах, клетках и тканях. Эти механизмы включают окислительное нитрозилирование железосодержащих и других металлосодержащих белков, таких, как рибонуклеотид-редуктаза, аконитаза, активацию растворимой гуанилатциклазы с повышением образования цГМФ, стимуляцию АДФ-зависимого рибозилирования белков, S-нитрозилирование сульфгидрильных (тиоловых) групп белков, приводящее к их посттрансляционной модификации (активации либо инактивации), активацию регулируемых факторов транспорта железа, меди и других переходных металлов.[39] Было также показано, что эндогенный оксид азота(II) способен активировать ядерный фактор транскрипции каппа (NF-κB) в мононуклеарных клетках периферической крови. А известно, что NF-κB является важным фактором транскрипции в регуляции процессов апоптоза и воспаления, и в частности важным фактором транскрипции в процессе индукции экспрессии гена индуцируемой синтазы оксида азота(II). Таким образом, продукция эндогенного оксида азота(II) саморегулируется — повышение уровня NO угнетает дальнейшую экспрессию индуцируемой синтазы оксида азота и предотвращает чрезмерное повышение её уровня и чрезмерное повреждение тканей организма хозяина в процессе воспаления и иммунного ответа[40].
Известно также, что вазодилатирующее действие оксида азота(II) опосредуется в основном через стимуляцию им активности растворимой гуанилатциклазы, являющейся гетеродимерным ферментом, активирующимся при нитрозилировании. Стимуляция активности гуанилатциклазы приводит к накоплению циклического ГМФ. Увеличение концентрации в клетке циклического ГМФ приводит к повышению активности протеинкиназы G. Протеинкиназа G, в свою очередь, фосфорилирует ряд важных внутриклеточных белков, что приводит к обратному захвату ионов кальция из цитоплазмы во внутриклеточные хранилища и к открытию активируемых кальцием калиевых каналов. Снижение концентрации ионов кальция в цитоплазме клетки приводит к тому, что киназа лёгкой цепи миозина, активируемая кальцием, теряет активность и не может фосфорилировать миозин, что приводит к нарушению образования в молекуле миозина «мостиков» и нарушению его свёртывания в более компактную структуру (сокращения), а следовательно и к расслаблению гладкомышечной клетки. А расслабление гладкомышечных клеток стенок сосудов ведёт к расширению сосудов (вазодилатации) и увеличению кровотока[41].
См. также
Примечания
- ↑ NITRIC OXIDE | CAMEO Chemicals | NOAA . Дата обращения: 1 апреля 2022. Архивировано 18 июля 2022 года.
- ↑ 1 2 http://www.cdc.gov/niosh/npg/npgd0448.html
- ↑ 1 2 David R. Lide, Jr. Basic laboratory and industrial chemicals (англ.): A CRC quick reference handbook — CRC Press, 1993. — ISBN 978-0-8493-4498-5
- ↑ D. E. Koshland, Jr. The Molecule of the Year (англ.) // Science : journal. — 1992. — Vol. 258, no. 5090. — P. 1861. — doi:10.1126/science.1470903. — . — PMID 1470903.
- ↑ Азота оксиды // Химическая энциклопедия / Ред. колл.: Кнунянц И. Л. и др. — М. : Советская энциклопедия, 1988. — Т. 1 : Абл—Дар. — 623 с.
- ↑ Weller, Richard, Could the sun be good for your heart? Архивная копия от 16 февраля 2014 на Wayback Machine TedxGlasgow. Filmed March 2012, posted January 2013
- ↑ Roszer, T (2012) The Biology of Subcellular Nitric Oxide. ISBN 978-94-007-2818-9
- ↑ Stryer, Lubert. Biochemistry, 4th Edition (англ.). — W.H. Freeman and Company[англ.], 1995. — P. 732. — ISBN 0-7167-2009-4.
- ↑ Plant-based Diets | Plant-based Foods | Beetroot Juice | Nitric Oxide Vegetables . Berkeley Test. Дата обращения: 4 октября 2013. Архивировано из оригинала 4 октября 2013 года.
- ↑ Ghosh, S. M.; Kapil, V.; Fuentes-Calvo, I.; Bubb, K. J.; Pearl, V.; Milsom, A. B.; Khambata, R.; Maleki-Toyserkani, S.; Yousuf, M.; Benjamin, N.; Webb, A. J.; Caulfield, M. J.; Hobbs, A. J.; Ahluwalia, A. Enhanced Vasodilator Activity of Nitrite in Hypertension: Critical Role for Erythrocytic Xanthine Oxidoreductase and Translational Potential (англ.) // Hypertension : journal. — 2013. — Vol. 61, no. 5. — P. 1091—1102. — doi:10.1161/HYPERTENSIONAHA.111.00933. — PMID 23589565.
- ↑ Webb, A. J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; MacAllister, R.; Hobbs, A. J.; Ahluwalia, A. Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite (англ.) // Hypertension : journal. — 2008. — Vol. 51, no. 3. — P. 784—790. — doi:10.1161/HYPERTENSIONAHA.107.103523. — PMID 18250365. — PMC 2839282.
- ↑ Hezel, MP; Weitzberg, E. The oral microbiome and nitric oxide homoeostasis (англ.) // Oral Diseases. — 2013. — P. n/a. — doi:10.1111/odi.12157.
- ↑ Green, Shawn J. Turning DASH Strategy into Reality for Improved Cardio Wellness Outcomes: Part II . Real World Health Care (25 июля 2013). Дата обращения: 4 октября 2013. Архивировано 17 февраля 2015 года.
- ↑ Proctor, P. H. Endothelium-Derived Relaxing Factor and Minoxidil: Active Mechanisms in Hair Growth (англ.) // Archives in Dermatology : journal. — 1989. — August (vol. 125, no. 8). — P. 1146. — doi:10.1001/archderm.1989.01670200122026. — PMID 2757417. Архивировано 10 марта 2016 года.
- ↑ Dessy, C.; Ferron, O. Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature (англ.) // Current Medical Chemistry – Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry : journal. — 2004. — Vol. 3, no. 3. — P. 207—216. — doi:10.2174/1568014043355348.
- ↑ Osanai, T; Fujiwara, N; Saitoh, M; Sasaki, S; Tomita, H; Nakamura, M; Osawa, H; Yamabe, H; Okumura, K. Relationship between salt intake, nitric oxide, and asymmetric dimethylarginine and its relevance to patients with end-stage renal disease (англ.) // Blood purification : journal. — 2002. — Vol. 20, no. 5. — P. 466—468. — doi:10.1159/000063555. — PMID 12207094.
- ↑ Green, SJ; Mellouk, S; Hoffman, SL; Meltzer, MS; Nacy, C. A. Cellular mechanisms of nonspecific immunity to intracellular infection: Cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes (англ.) // Immunology letters : journal. — 1990. — Vol. 25, no. 1—3. — P. 15—9. — doi:10.1016/0165-2478(90)90083-3. — PMID 2126524.
- ↑ Gorczyniski and Stanely, Clinical Immunology. Landes Bioscience; Austin, TX. ISBN 1-57059-625-5
- ↑ Green, SJ; Nacy, CA; Schreiber, RD; Granger, DL; Crawford, RM; Meltzer, MS; Fortier, A. H. Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice (англ.) // Infection and immunity[англ.] : journal. — 1993. — Vol. 61, no. 2. — P. 689—698. — PMID 8423095. — PMC 302781.
- ↑ Kamijo, R; Gerecitano, J; Shapiro, D; Green, SJ; Aguet, M; Le, J; Vilcek, J. Generation of nitric oxide and clearance of interferon-gamma after BCG infection are impaired in mice that lack the interferon-gamma receptor (англ.) // Journal of inflammation : journal. — 1995. — Vol. 46, no. 1. — P. 23—31. — PMID 8832969.
- ↑ Green, SJ; Scheller, LF; Marletta, MA; Seguin, MC; Klotz, FW; Slayter, M; Nelson, BJ; Nacy, C. A. Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens (англ.) // Immunology letters : journal. — 1994. — Vol. 43, no. 1—2. — P. 87—94. — doi:10.1016/0165-2478(94)00158-8. — PMID 7537721.
- ↑ Green, SJ; Crawford, RM; Hockmeyer, JT; Meltzer, MS; Nacy, C. A. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha (англ.) // Journal of immunology : journal. — 1990. — Vol. 145, no. 12. — P. 4290—4297. — PMID 2124240.
- ↑ Seguin, M. C.; Klotz, FW; Schneider, I; Weir, JP; Goodbary, M; Slayter, M; Raney, JJ; Aniagolu, JU; Green, S. J. Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: Involvement of interferon gamma and CD8+ T cells (англ.) // Journal of Experimental Medicine[англ.] : journal. — Rockefeller University Press[англ.], 1994. — Vol. 180, no. 1. — P. 353—358. — doi:10.1084/jem.180.1.353. — PMID 7516412. — PMC 2191552.
- ↑ Mellouk, S; Green, SJ; Nacy, CA; Hoffman, S. L. IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism (англ.) // Journal of immunology : journal. — 1991. — Vol. 146, no. 11. — P. 3971—3976. — PMID 1903415.
- ↑ Klotz, FW; Scheller, LF; Seguin, MC; Kumar, N; Marletta, MA; Green, SJ; Azad, A. F. Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites (англ.) // Journal of immunology : journal. — 1995. — Vol. 154, no. 7. — P. 3391—3395. — PMID 7534796.
- ↑ Wink, D.; Kasprzak, K.; Maragos, C.; Elespuru, R.; Misra, M; Dunams, T.; Cebula, T.; Koch, W.; Andrews, A.; Allen, J.; Et, al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors (англ.) // Science : journal. — 1991. — Vol. 254, no. 5034. — P. 1001—1003. — doi:10.1126/science.1948068. — PMID 1948068.
- ↑ Nguyen, T.; Brunson, D.; Crespi, C. L.; Penman, B. W.; Wishnok, J. S.; Tannenbaum, S. R. DNA Damage and Mutation in Human Cells Exposed to Nitric Oxide in vitro (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1992. — Vol. 89, no. 7. — P. 3030. — doi:10.1073/pnas.89.7.3030. Free text.
- ↑ Li, Chun-Qi; Pang, Bo; Kiziltepe, Tanyel; Trudel, Laura J.; Engelward, Bevin P.; Dedon, Peter C.; Wogan, Gerald N. Threshold Effects of Nitric Oxide-Induced Toxicity and Cellular Responses in Wild-Type and p53-Null Human Lymphoblastoid Cells (англ.) // Chemical Research in Toxicology[англ.] : journal. — 2006. — Vol. 19, no. 3. — P. 399—406. — doi:10.1021/tx050283e. — PMID 16544944. — PMC 2570754. free text
- ↑ Hibbs, John B.; Taintor, Read R.; Vavrin, Zdenek; Rachlin, Elliot M. Nitric oxide: A cytotoxic activated macrophage effector molecule (англ.) // Biochemical and Biophysical Research Communications : journal. — 1988. — Vol. 157, no. 1. — P. 87—94. — doi:10.1016/S0006-291X(88)80015-9. — PMID 3196352.
- ↑ Janeway, C. A.; and others. Immunobiology: the immune system in health and disease (англ.). — 6th. — New York: Garland Science[англ.], 2005. — ISBN 0-8153-4101-6.
- ↑ Jacobs, Lotte; Nawrot, Tim S; De Geus, Bas; Meeusen, Romain; Degraeuwe, Bart; Bernard, Alfred; Sughis, Muhammad; Nemery, Benoit; Panis, Luc. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study (англ.) // Environmental Health[англ.] : journal. — 2010. — Vol. 9. — P. 64. — doi:10.1186/1476-069X-9-64. — PMID 20973949. — PMC 2984475.
- ↑ Corpas, F. J.; Barroso, JB; Carreras, A; Quirós, M; León, AM; Romero-Puertas, MC; Esteban, FJ; Valderrama, R; Palma, JM; Sandalio, LM; Gómez, M; Del Río, L. A. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 2004. — Vol. 136, no. 1. — P. 2722—2733. — doi:10.1104/pp.104.042812. — PMID 15347796. — PMC 523336.
- ↑ Corpas, F. J.; Barroso, Juan B.; Carreras, Alfonso; Valderrama, Raquel; Palma, José M.; León, Ana M.; Sandalio, Luisa M.; Del Río, Luis A. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development (англ.) // Planta : journal. — 2006. — Vol. 224, no. 2. — P. 246—254. — doi:10.1007/s00425-005-0205-9. — PMID 16397797.
- ↑ Valderrama, R.; Corpas, Francisco J.; Carreras, Alfonso; Fernández-Ocaña, Ana; Chaki, Mounira; Luque, Francisco; Gómez-Rodríguez, María V.; Colmenero-Varea, Pilar; Del Río, Luis A.; Barroso, Juan B. Nitrosative stress in plants (англ.) // FEBS Lett[англ.] : journal. — 2007. — Vol. 581, no. 3. — P. 453—461. — doi:10.1016/j.febslet.2007.01.006. — PMID 17240373.
- ↑ Corpas, F. J.; Barroso, Juan B.; Del Rio, Luis A. Enzymatic sources of nitric oxide in plant cells – beyond one protein–one function (англ.) // New Phytologist[англ.] : journal. — 2004. — Vol. 162, no. 2. — P. 246—247. — doi:10.1111/j.1469-8137.2004.01058.x.
- ↑ Siegel-Itzkovich J. Viagra makes flowers stand up straight // BMJ. — 1999. — 31 июля (т. 319, № 7205). — С. 274—274. — ISSN 0959-8138. — doi:10.1136/bmj.319.7205.274a.
- ↑ van Faassen, E. and Vanin, A. (eds.) (2007) Radicals for life: The various forms of nitric oxide. Elsevier, Amsterdam, ISBN 978-0-444-52236-8
- ↑ van Faassen, E. and Vanin, A. (2004) «Nitric Oxide», in Encyclopedia of Analytical Science, 2nd ed., Elsevier, ISBN 0-12-764100-9.
- ↑ Shami, PJ; Moore, JO; Gockerman, JP; Hathorn, JW; Misukonis, MA; Weinberg, J. B. Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells (англ.) // Leukemia research : journal. — 1995. — Vol. 19, no. 8. — P. 527—533. — doi:10.1016/0145-2126(95)00013-E. — PMID 7658698.
- ↑ Kaibori M., Sakitani K., Oda M., Kamiyama Y., Masu Y. and Okumura T. Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-κB activation in rat hepatocytes (англ.) // J. Hepatol. : journal. — 1999. — Vol. 30, no. 6. — P. 1138—1145. — doi:10.1016/S0168-8278(99)80270-0. — PMID 10406194.
- ↑ Rhoades, RA; Tanner, G. A. Medical physiology 2nd edition (англ.). — 2003.