Правильный тетраэдр
Правильный тетраэдр | |
---|---|
![]() | |
![]() | |
Тип | правильный многогранник |
Комбинаторика | |
Элементы | |
Грани | правильные треугольники |
Конфигурация вершины | 3.3.3 |
Двойственный многогранник | тоже правильный тетраэдр |
Классификация | |
Символ Шлефли | {3,3} |
Группа симметрии | |
Количественные данные | |
Длина ребра | |
Площадь поверхности | |
Объём | |
Телесный угол при вершине | ср |
Тетраэдр называется правильным, если все его грани — равносторонние треугольники.
У правильного тетраэдра все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны.
Свойства правильного тетраэдра
![](http://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Dual_tetraeder.svg/220px-Dual_tetraeder.svg.png)
- Каждая его вершина является вершиной трех равносторонних треугольников. А значит, сумма плоских углов при каждой вершине будет равна .
- В правильный тетраэдр можно вписать октаэдр, притом четыре из восьми граней октаэдра будут совмещены с серединными треугольниками четырёх граней тетраэдра, а все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
- Правильный тетраэдр с ребром состоит из одного вписанного октаэдра (в центре) с ребром и четырёх тетраэдров (по вершинам) с ребром .
- Правильный тетраэдр можно вписать в куб, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба, а все шесть рёбер тетраэдра будут совмещены с диагоналями граней куба.
- Объём правильного тетраэдра равен [1]
- Площадь поверхности равна [1]
- Радиус вписанной сферы равен [1]
- Радиус описанной сферы равен [1]
- Радиус полувписанной сферы равен [1]
- Высота правильного тетраэдра равна = радиус вписанной сферы + радиус описанной сферы =
- Угол между двумя гранями равен
Интересные факты
Середины граней правильного тетраэдра также образуют правильный тетраэдр.
Соотношения:
- рёбер и высот правильных тетрадров, радиусов переписанных, описанных и писанных сфер соответственно равны ;
- площадей поверхности равно ;
- объёмов равно .
Примечания
Литература
- Harold Scott MacDonald Coxeter. Table I(i) // Regular Polytopes. — Methuen and Co., 1948.