Простое число-палиндром

Простое число-палиндром — простое число, которое также является палиндромом, то есть его запись одинаково читается как справа налево, так и слева направо. Палиндромичность зависит от выбранного основания системы счисления, тогда как простота — нет.

Десятичное основание

Несколько первых простых чисел-палиндромов в десятичной системе счисления (последовательность A002385 в OEIS):

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311…

В десятичной записи, за исключением 11, все простые числа-палиндромы содержат нечетное количество цифр, что следует из признака делимости на 11, по которому каждое палиндромное число с четным количеством цифр кратно 11. Неизвестно, существует ли бесконечное количество простых чисел-палиндромов по основанию 10.

Самое большое известное простое число-палиндром по десятичному основанию по состоянию на 2023 год это:

101888529 - 10944264 - 1.

состоит из 1 888 529 цифр и было обнаружено 18 октября 2021 года Райаном Проппером и Сергеем Баталовым[1].

Звериное простое число-палиндром содержит в центре число зверя 666. Один из примеров — это связанное с несколькими суевериями простое число Бельфегора 1000000000000066600000000000001, в котором 666 окружено с обеих сторон тринадцатью нулями. Ещё один пример такого числа — 700666007[2].

Тройное простое число-палиндром — по определению Рибенбойма, это простое число-палиндром p из q цифр, где q — простое число-палиндром из r цифр, где r — простое число-палиндром.[3] Например, p = 10 11310 + 4661664 ⋅105652 + 1, в котором q = 11311 цифр, а 11311 состоит из r = 5 цифр. Первое (по основанию 10) тройное простое число-палиндром — это 11-значное число 10000500001. Возможно и так, что тройное простое число-палиндром по основанию 10 также является палиндромом по другому основанию, и было бы весьма примечательно, если бы по другому основанию оно также было тройным простым числом-палиндромом.

Другие основания

Известно также, что для любого основания счисления почти все палиндромные числа составные[4], то есть соотношение количества составных палиндромных чисел ко всем палиндромным числам меньше n стремится к 1.

В двоичной системе счисления простыми числами-палиндромами являются простые числа Мерсенна и простые числа Ферма. Все двоичные простые числа-палиндромы, кроме двоичного 11 (десятичное 3), содержат нечетное количество цифр, так как палиндромы с четным числом цифр делятся на 3.

Несколько первых двоичных простых чисел-палиндромов (последовательность A117697 в OEIS):

11, 101, 111, 10001, 11111, 1001001, 1101011, 1111111, 100000001, 100111001, 110111011, …

Простые числа-палиндромы по основанию 12 (десять и одиннадцать обозначаются зеркально отраженными 2 и 3):

2, 3, 5, 7, Ɛ, 11, 111, 131, 141, 171, 181, 1Ɛ1, 535, 545, 565, 575, 585, 5Ɛ5, 727, 737, 747, 767, 797, Ɛ1Ɛ, Ɛ2Ɛ, Ɛ6Ɛ,. . .

Примечания

  1. Chris Caldwell, The Top Twenty: Palindrome Архивная копия от 10 декабря 2008 на Wayback Machine
  2. See Caldwell, Prime Curios! (CreateSpace, 2009) p. 251, quoted in Wilkinson, Alec (2 февраля 2015). "The Pursuit of Beauty". The New Yorker. Архивировано 12 апреля 2021. Дата обращения: 29 января 2015. {cite news}: |archive-date= / |archive-url= несоответствие временной метки; предлагается 12 апреля 2021 (справка)
  3. Paulo Ribenboim, The New Book of Prime Number Records
  4. William D. Banks, Derrick N. Hart, Mayumi Sakata, February 1, 2008 «Almost All Palindromes Are Composite»