Симметри́ческая ра́зность двух множеств — теоретико-множественная операция, результатом которой является новое множество, включающее все элементы исходных множеств, не принадлежащие одновременно обоим исходным множествам. Другими словами, если есть два множества и , их симметрическая разность есть объединение элементов , не входящих в , с элементами , не входящими в . На письме для обозначения симметрической разности множеств и используется обозначение , реже используется обозначение или [1].
Определение
Симметрическую разность можно ввести двумя способами:
симметрическая разность двух заданных множеств и — это такое множество , куда входят все те элементы первого множества, которые не входят во второе множество, а, также те элементы второго множества, которые не входят в первое множество:
симметрическая разность двух заданных множеств и — это такое множество , куда входят все те элементы обоих множеств, которые не являются общими для двух заданных множеств.
Понятие симметрической разности можно обобщить на число множеств, большее двух.
Если роль «суммы» играет операция симметрической разности, а роль «произведения» — пересечение множеств, то множества образуют кольцо с единицей. Причём другие основные операции теории множеств, разность и объединение, можно выразить через них:
Объединение симметрической разности с пересечением двух множеств равно объединению исходных множеств