Теория Янга — Миллса
Тео́рия Я́нга — Ми́ллса — калибровочная теория с неабелевой калибровочной группой. Калибровочные поля в этой теории называются полями Янга — Миллса. Такие теории были предложены в 1954 году Чжэньином Янгом и Робертом Миллсом[1], и первое время рассматривались лишь как математические поиски, не имеющие отношения к реальности[2]. Однако в 1960—1970-х годах на основе теорий Янга — Миллса были созданы две краеугольные теории стандартной модели в физике элементарных частиц: квантовая хромодинамика (теория сильных взаимодействий) на основе группы SU(3) и теория электрослабых взаимодействий на основе групп SU(2)×U(1).
Характерные свойства
Неабелевость группы означает, что поля-переносчики взаимодействий Янга — Миллса могут взаимодействовать сами с собой и друг с другом. Это влечёт за собой то, что уравнения, описывающие эволюцию полей Янга — Миллса, являются нелинейными (в противоположность линейным уравнениям Максвелла, отвечающим абелевой теории). Можно также сказать, что для полей Янга — Миллса не выполняется принцип суперпозиции.
Кванты полей Янга — Миллса являются векторными частицами (то есть бозонами со спином 1) и обладают нулевой массой. Однако с помощью механизма спонтанного нарушения симметрии физические поля Янга — Миллса могут приобретать ненулевую массу.
Нелинейность уравнений Янга — Миллса делает их очень сложными для решения. В режиме малой константы связи эти уравнения удаётся решить приближённо в виде ряда теории возмущений, однако как решить эти уравнения в режиме сильной связи, пока неизвестно. Неизвестно также, как именно эта нелинейность приводит к наблюдаемому в нашем мире конфайнменту в сильных взаимодействиях. Проблема решения уравнений Янга — Миллса в общем случае является одной из семи математических «Проблем тысячелетия», за решение любой из которых Математический институт Клэя[3] присудит премию в 1 миллион долларов США.
Математика
Теории Янга — Миллса — частный пример калибровочной теории поля с неабелевой группой калибровочной симметрии. Лагранжиан свободного поля Янга — Миллса таких теорий имеет определённый вид
где — 2-форма напряжённости поля Янга — Миллса, остающаяся инвариантной при воздействии на тензор-потенциал калибровочной группы:
где под понимается ковариантная производная в пространстве-времени, в пространстве Минковского в галилеевых координатах сводящаяся к обычной частной производной.
Порождающие алгебры Ли калибровочной группы удовлетворяют соотношению
- ,
где называются структурными константами группы.
Ковариантные (иногда называемые удлинёнными) производные полей, взаимодействующих через поля Янга — Миллса данной теории, определены как:
- ,
где — единичный оператор, а — это константа взаимодействия. В четырёхмерном пространстве-времени константа взаимодействия — это безразмерная величина. Для групп .
Вышеприведённое определение может быть получено исходя из коммутатора:
- .
Само поле Янга — Миллса оказывается при этом самодействующим, а получающиеся уравнения движения:
называются полулинейными. В случае малой константы связи в данной теории применима теория возмущений.
Переход между «верхним» («контравариантным») и «нижним» («ковариантным») векторными или тензорными компонентами тривиальны для групповых латинских индексов (например, , в групповом пространстве введена евклидова метрика), но нетривиальны для пространственно-временных греческих индексов, которые жонглируются метрикой пространства-времени, в простейшем случае — обычной метрикой Минковского .
С введением уравнения движения можно переписать так:
Так как — 2-форма, то выполняется тождество Бьянки:
- .
Источник входит в уравнения движения как:
- .
(Токи тоже должны правильно меняться при калибровочных преобразованиях.)
В измерениях пространства-времени поле масштабируется как и, таким образом, взаимодействие должно иметь размерность . Это означает, что теории Янга — Миллса не перенормируемы для размерностей пространства-времени больше, чем четыре (см. также Антропный принцип). Кроме того, для константа связи безразмерна, а поле и квадрат константы взаимодействия имеют одинаковые размерности с полем и константой взаимодействия теории скалярного безмассового поля с самодействием . Таким образом, эти теории имеют одинаковую масштабную инвариантность на классическом уровне.
Примечания
- ↑ C. N. Yang, R. Mills. Conservation of Isotopic Spin and Isotopic Gauge Invariance (англ.) // Physical Review : journal. — 1954. — Vol. 96, no. 1. — P. 191—195. — doi:10.1103/PhysRev.96.191.
- ↑ См. Предисловие в книге Девитт Б. С. Динамическая теория групп и полей: Пер. с англ. / Под ред. Г. А. Вилковыского. — М.: Наука. Гл. ред. физ.-мат. лит. — 1987. — 288 с.
репринтное переиздание: Череповец: Меркурий-пресс, 2000. ISBN 5-11-480064-7. - ↑ The Millennium Prize Problems - Clay Mathematics Institute (англ.). Дата обращения: 4 мая 2024. Архивировано 20 апреля 2024 года.
Литература
- Янг, Ч., Миллс Р. Сохранение изотопического спина и изотопическая калибровочная инвариантность // Элементарные частицы и компенсирующие поля / под ред. Д. Иваненко. — М.: Мир, 1964. — С. 28—38.
- Славнов, А. А., Фаддеев Л. Д. Введение в квантовую теорию калибровочных полей. — М. : Наука, 1978. — С. 240.