5-Aminolevulinat sintaza
5-Aminolevulinat sintaza | |||||||||
---|---|---|---|---|---|---|---|---|---|
5-Aminolevulinat sintaza dimer, Rhodobacter capsulatus | |||||||||
Identifikatori | |||||||||
EC broj | 2.3.1.37 | ||||||||
CAS broj | 9037-14-3 | ||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB | RCSB PDB PDBe PDBj PDBsum | ||||||||
|
5-Aminolevulinat sintaza (EC 2.3.1.37, ALAS, ALA sintaza, alfa-aminolevulinsko kiselinska sintaza, delta-aminolevulinatna sintaza, delta-aminolevulinatna sintetaza, delta-aminolevulinsko kiselinska sintaza, delta-aminolevulinsko kiselinska sintetaza, delta-aminolevulinska sintetaza, 5-aminolevulinatna sintetaza, 5-aminolevulinsko kiselinska sintetaza, ALA sintetaza, aminolevulinatna sintaza, aminolevulinatna sintetaza, aminolevulinsko kiselinska sintaza, aminolevulinsko kiselinska sintetaza, aminolevulinska sintetaza) je enzim sa sistematskim imenom sukcinil-KoA:glicin C-sukciniltransferaza (dekarboksilacija).[1][2][3][4][5][6][7] Ovaj enzim katalizuje sledeću hemijsku reakciju
- sukcinil-KoA + glicin 5-aminolevulinat + KoA + CO2
Ovaj enzim je piridoksal-fosfatni protein. Enzim u eritrocitima se genetički razlikuje od drugih tkiva.
Reference
- ↑ Bishop, D.F., Henderson, A.S. and Astrin, K.H. (1990). „Human δ-aminolevulinate synthase - assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X-chromosome”. Genomics 7: 207-214. PMID 2347585.
- ↑ Kikuchi, G., Kumar, A., Talmage, P. and Shemin, D. (1958). „The enzymatic synthesis of δ-aminolevulinic acid”. J. Biol. Chem. 233: 1214-1219. PMID 13598764.
- ↑ Ramaswamy, N.K. and Nair, P.M. (1973). „δ-Aminolevulinic acid synthetase from cold-stored potatoes”. Biochim. Biophys. Acta 293: 269-277. PMID 4685279.
- ↑ Scholnick, P.L., Hammaker, L.E. and Marver, H.S. (1972). „Soluble δ-aminolevulinic acid synthetase of rat liver. I. Some properties of the partially purified enzyme”. J. Biol. Chem. 247: 4126-4131. PMID 4624703.
- ↑ Scholnick, P.L., Hammaker, L.E. and Marver, H.S. (1972). „Soluble δ-aminolevulinic acid synthetase of rat liver. II. Studies related to the mechanism of enzyme action and hemin inhibition”. J. Biol. Chem. 247: 4132-4137. PMID 5035685.
- ↑ Tait, G.H. (1973). „Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells”. Biochem. J. 131: 389-403. PMID 4722442.
- ↑ Warnick, G.R. and Burnham, B.F. (1971). „Regulation of porphyrin biosynthesis. Purification and characterization of δ-aminolevulinic acid synthase”. J. Biol. Chem. 246: 6880-6885. PMID 5315997.
Literatura
- Nicholas C. Price, Lewis Stevens (1999). Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins (Third izd.). USA: Oxford University Press. ISBN 019850229X.
- Eric J. Toone (2006). Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution (Volume 75 izd.). Wiley-Interscience. ISBN 0471205036.
- Branden C, Tooze J.. Introduction to Protein Structure. New York, NY: Garland Publishing. ISBN: 0-8153-2305-0.
- Irwin H. Segel. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Book 44 izd.). Wiley Classics Library. ISBN 0471303097.
- Robert A. Copeland (2013). Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists (2nd izd.). Wiley-Interscience. ISBN 111848813X.
- Gerhard Michal, Dietmar Schomburg (2012). Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (2nd izd.). Wiley. ISBN 0470146842.