Arkus kotangens
Arkus kotangens
Osnovne osobine Parnost neparna Domen (-∞,∞) Kodomen (-π/2,π/2) Specifične vrednosti Vrednost u +∞ 0 Vrednost u -∞ 0 Vrednost u 0+ π/2 Vrednost u 0- -π/2 Specifične osobine Asimptote y = 0
Arkus kotangens je funkcija inverzna funkciji kotangensa na intervalu njenog domena [-π/2,π/2]. Koristi se za određivanje veličine ugla kada je poznata vrednost njegovog kotangensa. Može se definisati sledećom funkcijom:
arcctg
x
=
ctg
−
1
x
=
i
2
(
log
(
1
−
i
x
)
−
log
(
1
+
i
x
)
)
{\displaystyle \operatorname {arcctg} \;x=\operatorname {ctg} ^{-1}x={\frac {i}{2}\left(\log \left(1-{\frac {i}{x}\right)-\log \left(1+{\frac {i}{x}\right)\right)}
Pri čemu treba važiti da je x različito od nule.
Slede neke od formula koje se vezuju za arkus kotangens:
arcctg
x
=
π
2
−
arctan
x
{\displaystyle \operatorname {arcctg} \;x={\frac {\pi }{2}-\arctan x}
(pravilo komplementnih uglova)
arcctg
(
−
x
)
=
π
−
arcctg
x
{\displaystyle \operatorname {arcctg} (-x)=\pi -\operatorname {arcctg} \;x\!}
arcctg
1
x
=
π
2
−
arcctg
x
=
arctan
x
,
{\displaystyle \operatorname {arcctg} \;{\frac {1}{x}={\frac {\pi }{2}-\operatorname {arcctg} \;x=\arctan x,\ }
x
>
0
{\displaystyle \ x>0}
arcctg
1
x
=
3
π
2
−
arcctg
x
=
π
+
arctan
x
,
{\displaystyle \operatorname {arcctg} \;{\frac {1}{x}={\frac {3\pi }{2}-\operatorname {arcctg} \;x=\pi +\arctan x,\ }
x
<
0
{\displaystyle \ x<0}
Izvod:
d
d
x
arcctg
x
=
−
1
1
+
x
2
{\displaystyle {\frac {d}{dx}\operatorname {arcctg} \;x{}={\frac {-1}{1+x^{2}
Predstavljanje u formi integrala:
arcctg
x
=
∫
x
∞
1
x
2
+
1
d
x
{\displaystyle \operatorname {arcctg} \;x{}=\int _{x}^{\infty }{\frac {1}{x^{2}+1}\,dx}
Predstavljanje u formi beskonačne sume:
arcctg
x
=
π
2
−
arctan
x
=
π
2
−
(
z
−
x
3
3
+
x
5
5
−
x
7
7
+
⋯
)
=
π
2
−
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
2
n
+
1
;
|
x
|
≤
1
x
≠
i
,
−
i
{\displaystyle {\begin{aligned}\operatorname {arcctg} x&{}={\frac {\pi }{2}-\arctan x\\&{}={\frac {\pi }{2}-(z-{\frac {x^{3}{3}+{\frac {x^{5}{5}-{\frac {x^{7}{7}+\cdots )\\&{}={\frac {\pi }{2}-\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}{2n+1};\qquad |x|\leq 1\qquad x\neq i,-i\end{aligned}
Vanjske veze
The article is a derivative under the Creative Commons Attribution-ShareAlike License .
A link to the original article can be found here and attribution parties here
By using this site, you agree to the Terms of Use . Gpedia ® is a registered trademark of the Cyberajah Pty Ltd