Primitive root modulo n
In modular arithmetic , a number g is a primitive root modulo n , if every number m from 1..(n-1) can be expressed in the form of
g
x
≡
m
(
mod
n
)
{\displaystyle g^{x}\equiv m{\pmod {n}
. As an example, 3 is a primitive root modulo 7:
3
1
≡
3
(
mod
7
)
{\displaystyle 3^{1}\equiv 3\ {\pmod {7}
3
2
≡
2
(
mod
7
)
{\displaystyle 3^{2}\equiv 2\ {\pmod {7}
3
3
≡
6
(
mod
7
)
{\displaystyle 3^{3}\equiv 6\ {\pmod {7}
3
4
≡
4
(
mod
7
)
{\displaystyle 3^{4}\equiv 4\ {\pmod {7}
3
5
≡
5
(
mod
7
)
{\displaystyle 3^{5}\equiv 5\ {\pmod {7}
3
6
≡
1
(
mod
7
)
{\displaystyle 3^{6}\equiv 1\ {\pmod {7}
All the elements
1
,
2
,
…
,
6
{\displaystyle 1,2,\ldots ,6}
of the group modulo 7 can be expressed that way. The number 2 is no primitive root modulo 7, because
2
3
=
8
≡
1
(
mod
7
)
{\displaystyle 2^{3}=8\equiv 1{\pmod {7}
and
2
6
=
64
≡
1
(
mod
7
)
{\displaystyle 2^{6}=64\equiv 1{\pmod {7}
The article is a derivative under the Creative Commons Attribution-ShareAlike License .
A link to the original article can be found here and attribution parties here
By using this site, you agree to the Terms of Use . Gpedia ® is a registered trademark of the Cyberajah Pty Ltd