Hessenbergova matrika
Hessenbergova matrika (oznaka
H
{\displaystyle H\,}
) je kvadratna matrika , ki ima elemente pod ali nad prvo stransko diagonalo enake 0.
Imenuje se po nemškem matematiku Karlu Hessenbergu (1904 – 1959).
Hessenbergova matrika je lahko
zgornja Hessenbergova matrika, ki ima ničelne elemente pod prvo stransko diagonalo
spodnja Hessenbergova matrika, ki ima ničelne elemente nad prvo stransko diagonalo
Primeri
Zgornja Hessenbergova matrika
[
1
4
2
3
3
4
1
7
0
2
3
4
0
0
1
3
]
{\displaystyle {\begin{bmatrix}1&4&2&3\\3&4&1&7\\0&2&3&4\\0&0&1&3\\\end{bmatrix}
Spodnja Hessenbergova matrika
[
1
2
0
0
5
2
3
0
3
4
3
7
5
6
1
1
]
{\displaystyle {\begin{bmatrix}1&2&0&0\\5&2&3&0\\3&4&3&7\\5&6&1&1\\\end{bmatrix}
.
Splošna oblika zgornje Hessenbergove matrike pa je
H
=
[
h
11
h
12
h
13
⋯
h
1
n
h
21
h
22
h
23
⋯
h
2
n
0
h
32
h
33
⋯
h
3
n
⋮
⋱
⋱
⋱
⋮
0
⋯
0
h
n
n
−
1
h
n
n
]
{\displaystyle H={\begin{bmatrix}h_{11}&h_{12}&h_{13}&\cdots &h_{1n}\\h_{21}&h_{22}&h_{23}&\cdots &h_{2n}\\0&h_{32}&h_{33}&\cdots &h_{3n}\\\vdots &\ddots &\ddots &\ddots &\vdots \\0&\cdots &0&h_{nn-1}&h_{nn}\end{bmatrix}
.
Splošna oblika spodnje Hessenbergove matrike pa je:
H
=
[
h
11
h
12
0
⋯
0
h
21
h
22
h
23
⋯
0
h
31
h
32
h
33
⋯
h
3
n
⋮
⋱
⋱
⋱
⋮
h
n
1
⋯
h
n
3
h
n
n
−
1
h
n
n
]
{\displaystyle H={\begin{bmatrix}h_{11}&h_{12}&0&\cdots &0\\h_{21}&h_{22}&h_{23}&\cdots &0\\h_{31}&h_{32}&h_{33}&\cdots &h_{3n}\\\vdots &\ddots &\ddots &\ddots &\vdots \\h_{n1}&\cdots &h_{n3}&h_{nn-1}&h_{nn}\end{bmatrix}
Lastnosti
zgornjo in spodnjo Hessenbergovo matriko prištevamo med tridiagonalne matrike .
zmnožek Hessenbergove matrike s trikotno matriko je Hessenbergova matrika ali bolj natančno, če je
A
{\displaystyle A\,}
zgornja Hessenbergova matrika in je
T
{\displaystyle T\,}
zgornja trikotna matrika, potem sta
A
T
{\displaystyle AT\,}
in
T
A
{\displaystyle TA\,}
tudi zgornji Hessenbergovi matriki.
Glej tudi
Zunanje povezave
The article is a derivative under the Creative Commons Attribution-ShareAlike License .
A link to the original article can be found here and attribution parties here
By using this site, you agree to the Terms of Use . Gpedia ® is a registered trademark of the Cyberajah Pty Ltd