Пресек (теорија скупова)

У математици, пресек (ијек. пресјек; означен са ∩) два скупа A и B је скуп који садржи све елементе скупа A који такође припадају скупу B (или, еквивалентно, сви елементи скупа B који такође припадају скупу A), и ниједан други елемент[1].

Пресек два скупа
Пресек три скупа

Формална дефиниција

Формална дефиниција пресека два скупа A и B је скуп:

тј. x ∈A∩B ако и само ако

  1. x ∈ A и
  2. x ∈ B.

На пример:

Уопште, може се рачунати пресек неколико скупова одједном. На пример, пресек скупова A, B, C, и D, је A ∩ B ∩ C ∩ D = A ∩ (B ∩ (C ∩ D)). Пресек скупова је асоцијативна операција па важи идентитет A ∩ (B ∩ C) = (A ∩ B) ∩ C.

Унутар универзума U може се дефинисати комплемент Ac скупа A као скуп свих елемената U који нису у A. Сада се пресек скупова A и B може записати као комплемент уније њихових комплемената, што следи из Де Морганових закона:

A ∩ B = (Ac ∪ Bc)c.

Види још

Референце

  1. ^ А. Перовић, А. Јовановић, Б. Величковић: Теорија скупова Архивирано на сајту Wayback Machine (17. новембар 2015), Математички факултет, Београд.
  2. ^ „Пресек скупова”. Приступљено 17. 11. 2015. 

Спољашње везе