Ciklični guanozin monofosfat
Nazivi | |
---|---|
IUPAC naziv
2-amino-9-[(1S,6R,8R,9R)-3,9-dihydroxy-3-oxo-2,4,7-trioxa-3λ5-phosphabicyclo[4.3.0]nonan-8-yl]-3H-purin-6-one
| |
Drugi nazivi
cGMP; 3',5'-ciklični GMP; Guanozin ciklični monofosfat; Ciklični 3',5'-GMP; Guanozin 3',5'-ciklični fosfat
| |
Identifikacija | |
3D model (Jmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.028.765 |
MeSH | Cyclic+GMP |
| |
Svojstva | |
C10H12N5O7P | |
Molarna masa | 345,21 g·mol−1 |
Ukoliko nije drugačije napomenuto, podaci se odnose na standardno stanje materijala (na 25 °C [77 °F], 100 kPa). | |
verifikuj (šta je ?) | |
Reference infokutije | |
Ciklični guanozin monofosfat (cGMP) je ciklični nukleotid koji je derivat guanozin trifosfata (GTP). cGMP dejstvuje kao sekundarni glasnik poput cikličnog AMP. Na primer, cGMP aktivira intracelularne protein kinaze u responsu na vezivanje membrana-nepermeabilnih peptidnih hormona na ćelijsku površinu.[3]
Sinteza
cGMP sinteza je katalizovana guanilat ciklazom (GC), koja konvertuje GTP u cGMP. Za membranu-vezana GC je aktivirana peptidnim hormonima poput atrijalnog natriuretskog faktora, dok je rastvorna GC tipično aktivirana azot-monoksidom za stimulaciju cGMP sinteze.
Efekti
cGMP je opšti regulator provodnosti jonskih kanala, glikogenolize, i ćelijske apoptoze. On takođe relaksira glatka mišićna tkiva. U krvnim sudovima, relaksacija vaskularnih glatkih mišića dovodi do vazodilacije i povišenog protoka krvi.
cGMP je sekundarni glasnik u fototransdukciji u oku. U fotoreceptorima oka sisara, prisustvo svetla aktivira fosfodiesterazu, koja degradira cGMP. Kalcijumski jonski kanali u fotoreceptorima su cGMP-kontrolisani, tako da degradacija cGMP uzrokuje zatvaranje kalcijumovih kanala, što dovodi do hiperpolarizacije fotoreceptorske membrane plazme i ultimatno do prenosa vizuelne informacije do mozga.[4] GMP i njegovi brojni derivati takođe imaju umami ukus.[5]
Vidi još
- Hipoksantin-guanin fosforibosiltransferaza
- Ribonukleozid monofosfat
- 8-Bromoguanozin 3',5'-ciklični monofosfat (8-Br-cGMP)
Literatura
- ^ Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today. 15 (23-24): 1052—7. PMID 20970519. doi:10.1016/j.drudis.2010.10.003.
- ^ Evan E. Bolton; Yanli Wang; Paul A. Thiessen; Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry. 4: 217—241. doi:10.1016/S1574-1400(08)00012-1.
- ^ Francis SH, Corbin JD (1999). „Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action”. Crit Rev Clin Lab Sci. 36 (4): 275—328. ISSN 1040-8363. PMID 10486703. doi:10.1080/10408369991239213.
- ^ R. Lane Brown; Timothy Strassmaier; James D. Brady; Jeffrey W. Karpen (2006). „The Pharmacology of Cyclic Nucleotide-Gated Channels: Emerging from the Darkness”. Current Pharmaceutical Design. 12 (28): 3597—613. PMC 2467446 . PMID 17073662. doi:10.2174/138161206778522100. NIHMSID: NIHMS47625.
- ^ Cairoli P, Pieraccini S, Sironi M, Morelli CF, Speranza G, Manitto P (2008). „Studies on umami taste. Synthesis of new guanosine 5'-phosphate derivatives and their synergistic effect with monosodium glutamate”. J. Agric. Food Chem. 56 (3): 1043—50. ISSN 0021-8561. PMID 18181569. doi:10.1021/jf072803c.
Spoljašnje veze
- Cyclic+guanosine+monophosphate на US National Library of Medicine Medical Subject Headings (MeSH)