RNASEH1
Ribonukleaza H1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Доступне структуре | |||||||||||
2QK9, 2QKB, 2QKK, 3BSU | |||||||||||
Идентификатори | |||||||||||
Симболи | RNASEH1; H1RNA; RNH1 | ||||||||||
Вањски ИД | OMIM: 604123 MGI: 1335073 HomoloGene: 2202 GeneCards: RNASEH1 Gene | ||||||||||
ЕЦ број | 3.1.26.4 | ||||||||||
| |||||||||||
Ортолози | |||||||||||
Врста | Човек | Миш | |||||||||
Ентрез | 246243 | 19819 | |||||||||
Eнсембл | ENSG00000171865 | ENSMUSG00000020630 | |||||||||
UниПрот | O60930 | E9QLN8 | |||||||||
Реф. Секв. (иРНК) | NM_002936 | NM_011275 | |||||||||
Реф. Секв. (протеин) | NP_002927 | NP_035405 | |||||||||
Локација (УЦСЦ) |
Chr 2: 3.59 - 3.61 Mb |
Chr 12: 28.65 - 28.66 Mb | |||||||||
ПубМед претрага | [1] | [2] |
Рибонуклеазе Х1, такође позната као RNaza H1, је ензим, који је код људи кодиран RNASEH1 геном.[1][2][3]. RNaza H1 је неспецифична ендонуклеаза која катализује пресецање РНК хидролитицке механизмом.
Референце
- ^ „Entrez Gene: ribonuclease H1”.
- ^ ten Asbroek AL, van Groenigen M, Jakobs ME, Koevoets C, Janssen B, Baas F (јун 2002). „Ribonuclease H1 maps to chromosome 2 and has at least three pseudogene loci in the human genome”. Genomics. 79 (6): 818—23. PMID 12036296. doi:10.1006/geno.2002.6776.
- ^ Nowotny M, Gaidamakov SA, Ghirlando R, Cerritelli SM, Crouch RJ, Yang W (октобар 2007). „Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription”. Mol. Cell. 28 (2): 264—76. PMID 17964265. doi:10.1016/j.molcel.2007.08.015.
Литература
- Nowotny M; Cerritelli SM; Ghirlando R; et al. (2008). „Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD.”. EMBO J. 27 (7): 1172—81. PMC 2323259 . PMID 18337749. doi:10.1038/emboj.2008.44.
- Lima WF; Wu H; Nichols JG; et al. (2003). „Human RNase H1 uses one tryptophan and two lysines to position the enzyme at the 3'-DNA/5'-RNA terminus of the heteroduplex substrate.”. J. Biol. Chem. 278 (50): 49860—7. PMID 14506260. doi:10.1074/jbc.M306543200.
- Lima WF; Rose JB; Nichols JG; et al. (2007). „The positional influence of the helical geometry of the heteroduplex substrate on human RNase H1 catalysis.”. Mol. Pharmacol. 71 (1): 73—82. PMID 17028157. doi:10.1124/mol.106.025429.
- Lima WF; Nichols JG; Wu H; et al. (2004). „Structural requirements at the catalytic site of the heteroduplex substrate for human RNase H1 catalysis.”. J. Biol. Chem. 279 (35): 36317—26. PMID 15205459. doi:10.1074/jbc.M405035200.
- Otsuki T; Ota T; Nishikawa T; et al. (2005). „Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.”. DNA Res. 12 (2): 117—26. PMID 16303743. doi:10.1093/dnares/12.2.117.
- Wu H, Lima WF, Crooke ST (1999). „Properties of cloned and expressed human RNase H1.”. J. Biol. Chem. 274 (40): 28270—8. PMID 10497183. doi:10.1074/jbc.274.40.28270.
- Frank P, Braunshofer-Reiter C, Pöltl A, Holzmann K (1998). „Cloning, subcellular localization and functional expression of human RNase HII.”. Biol. Chem. 379 (12): 1407—12. PMID 9894807. doi:10.1515/bchm.1998.379.12.1407.
- Wu H; Lima WF; Zhang H; et al. (2004). „Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs.”. J. Biol. Chem. 279 (17): 17181—9. PMID 14960586. doi:10.1074/jbc.M311683200.
- Hillier LW; Graves TA; Fulton RS; et al. (2005). „Generation and annotation of the DNA sequences of human chromosomes 2 and 4.”. Nature. 434 (7034): 724—31. PMID 15815621. doi:10.1038/nature03466.
- Lima WF; Wu H; Nichols JG; et al. (2003). „Human RNase H1 activity is regulated by a unique redox switch formed between adjacent cysteines.”. J. Biol. Chem. 278 (17): 14906—12. PMID 12473655. doi:10.1074/jbc.M211279200.
- ten Asbroek AL, van Groenigen M, Nooij M, Baas F (2002). „The involvement of human ribonucleases H1 and H2 in the variation of response of cells to antisense phosphorothioate oligonucleotides.”. Eur. J. Biochem. 269 (2): 583—92. PMID 11856317. doi:10.1046/j.0014-2956.2001.02686.x.
- Gerhard DS; Wagner L; Feingold EA; et al. (2004). „The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”. Genome Res. 14 (10B): 2121—7. PMC 528928 . PMID 15489334. doi:10.1101/gr.2596504.
- Ota T; Suzuki Y; Nishikawa T; et al. (2004). „Complete sequencing and characterization of 21,243 full-length human cDNAs.”. Nat. Genet. 36 (1): 40—5. PMID 14702039. doi:10.1038/ng1285.
- Cerritelli SM, Crouch RJ (1998). „Cloning, expression, and mapping of ribonucleases H of human and mouse related to bacterial RNase HI.”. Genomics. 53 (3): 300—7. PMID 9799596. doi:10.1006/geno.1998.5497.
- Strausberg RL; Feingold EA; Grouse LH; et al. (2002). „Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899—903. PMC 139241 . PMID 12477932. doi:10.1073/pnas.242603899.
- Cerritelli SM; Frolova EG; Feng C; et al. (2003). „Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice.”. Mol. Cell. 11 (3): 807—15. PMID 12667461. doi:10.1016/S1097-2765(03)00088-1.
- Lima WF; Rose JB; Nichols JG; et al. (2007). „Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate.”. Mol. Pharmacol. 71 (1): 83—91. PMID 17028158. doi:10.1124/mol.106.025015.