మూస:Intmath
∫
This template generates integral symbols using unicode, for inline {math} formulae as an alternative to LaTeX generated in <math>.
Parameters
The template has three parameters, applicable one by one:
- Integral sign: Choose one of:
- int for ∫ symbol is U+222B
- iint for ∬ (double integral, U+222C),
- iiint for ∭ (triple integral, U+222D),
- oint for ∮ (contour integral, U+222E),
- varointclockwise for ∲ (clockwise contour integral, U+2232)
- ointctrclockwise for ∳ (anticlockwise contour integral, U+2233),
- oiint for ∯ (closed surface integral, U+222F),
- oiiint for ∰ (closed volume integral, U+2230).
- Subscript: Enter the subscript (symbol or short expression), for the lower limit or denoting an n-dimensional space or the (n − 1)- dimensional boundary.
- Superscript: Enter the superscript (symbol or short expression) for the upper limit.
NB:
- Applying italics to the integral symbol has no effect in Firefox, it remains upright.
- This template already includes {su}.
Examples
No {math}
Gamma function
- Γ(z) = ∫∞
0 e−ttz − 1dt
Γ(''z'') = {intmath|int|0|∞} ''e''<sup>−''t''</sup>''t''<sup>''z'' − 1</sup>''dt''
Line integral
- ∲
C F(x) ∙ dx = −∳
C F(x) ∙ dx
{intmath|varointclockwise|''C''} ''F''('''x''') ∙ ''d'''''x''' = −{intmath|ointctrclockwise|''C''} ''F''('''x''') ∙ ''d'''''x'''
Maxwell's equations
- ∯
∂V E ∙ dS = 1/ε0∭
V ρ dV
- ∯
∂V B ∙ dS = 0
- ∮
∂S E ∙ dx = −∬
S ∂B/∂t ∙ dS
- ∮
∂S B ∙ dx = ∬
S (μ0J + 1/c2∂E/∂t) ∙ dS
{intmath|oiint|∂''V''} '''E''' ∙ ''d'''''S''' = {sfrac|1|''ε''<sub>0</sub>}{intmath|iiint|''V''} ''ρ'' ''dV''
{intmath|oiint|∂''V''} '''B''' ∙ ''d'''''S''' = 0
{intmath|oint|∂''S''} '''E''' ∙ ''d'''''x''' = −{intmath|iint|''S''} {sfrac|∂'''B'''|∂''t''} ∙ ''d'''''S'''
{intmath|oint|∂''S''} '''B''' ∙ ''d'''''x''' = {intmath|iint|''S''} (''μ''<sub>0</sub>'''J''' + {sfrac|1|''c''<sup>2</sup>}{sfrac|∂'''E'''|∂''t''}) ∙ ''d'''''S'''
{math}
Gamma function
- Γ(z) = ∫∞
0 e−ttz − 1dt
{math|Γ(''z'') {=} {intmath|int|0|∞} ''e''<sup>−''t''</sup>''t''<sup>''z'' − 1</sup>''dt''}
Line integral
- ∲
CF(x) ∙ dx = −∳
C F(x) ∙ dx
{math|{intmath|varointclockwise|''C''} ''F''('''x''') ∙ ''d'''''x''' {=} −{intmath|ointctrclockwise|''C''} ''F''('''x''') ∙ ''d'''''x'''}
Maxwell's equations
- ∯
∂V E ∙ dS = 1/ε0∭
V ρ dV
- ∯
∂V B ∙ dS = 0
- ∮
∂S E ∙ dx = −∬
S ∂B/∂t ∙ dS
- ∮
∂S B ∙ dx = ∬
S (μ0J + 1/c2∂E/∂t) ∙ dS
{math|{intmath|oiint|∂''V''} '''E''' ∙ ''d'''''S''' {=} {sfrac|1|''ε''<sub>0</sub>}{intmath|iiint|''V''} ''ρ'' ''dV''}
{math|{intmath|oiint|∂''V''} '''B''' ∙ ''d'''''S''' {=} 0}
{math|{intmath|oint|∂''S''} '''E''' ∙ ''d'''''x''' {=} −{intmath|iint|''S''} {sfrac|∂'''B'''|∂''t''} ∙ ''d'''''S'''}
{math|{intmath|oint|∂''S''} '''B''' ∙ ''d'''''x''' {=} {intmath|iint|''S''} (''μ''<sub>0</sub>'''J''' + {sfrac|1|''c''<sup>2</sup>}{sfrac|∂'''E'''|∂''t''}) ∙ ''d'''''S'''}
See also
- {oiint}
- {oiiint}
- {Intorient}
- Wikipedia:«math»