埃斯特韦斯-曼斯菲尔德-克拉克森方程
埃斯特韦斯 - 曼斯菲尔德 - 克拉克森方程(Estevez-Mansfield-Clarkson equation)是一个非线性偏微分方程:[1]
U=u(x,y,t)。
解析解
![{\displaystyle u(x,y,t)=_{C}5+_{C}6*(_{C}1+_{C}2*x+_{C}3*y+_{C}4*t)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8712d44d381d2d8a9fd078b1a2448e2caae20b3b)
![{\displaystyle u(x,y,t)=_{C}5+6*_{C}3*cot(_{C}1+_{C}2*x+_{C}3*y+4*_{C}3^{3}*t)/\beta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/840b9cbe67306f6e68775ed39a40a95df89e1585)
![{\displaystyle u(x,y,t)=_{C}5+6*_{C}3*coth(_{C}1+_{C}2*x+_{C}3*y-4*_{C}3^{3}*t)/\beta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf2c3acea4beb38109102bd4ddcc287c89bfb2a9)
![{\displaystyle u(x,y,t)=_{C}5-6*_{C}3*tan(_{C}1+_{C}2*x+_{C}3*y+4*_{C}3^{3}*t)/\beta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cbfbfb632dfe8806699cc76fb182740e56ca916c)
![{\displaystyle u(x,y,t)=_{C}5+6*_{C}3*tanh(_{C}1+_{C}2*x+_{C}3*y-4*_{C}3^{3}*t)/\beta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/f49c6cae1cacc593265c9e3547e0a2d80df8444d)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
行波图
Estevez-Mansfield-Clarkson equation traveling wave plot
|
Estevez-Mansfield-Clarkson equation traveling wave plot
|
Estevez-Mansfield-Clarkson equation traveling wave plot
|
Estevez-Mansfield-Clarkson equation traveling wave plot
|
Estevez-Mansfield-Clarkson equation traveling wave plot
|
参考文献
- ^ 李志斌编著 《非线性数学物理方程的行波解》 页 科学出版社 2008
- *谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- *何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759