大型语言模型列表
大型语言模型 (LLM) 是一种机器学习模型,专为语言生成等自然语言处理任务而设计。LLM 是具有许多参数的语言模型,并通过对大量文本进行自监督学习进行训练。
本页列出了值得注意的大型语言模型。
对于训练成本一列,1 petaFLOP-day = 1 petaFLOP/sec × 1 天 = 8.64×1019 FLOP。此外,仅列出最大模型的成本。
名称 | 发布日期[a] | 开发者 | 参数量 (十亿) [b] | 语料库大小 | 训练成本 (petaFLOP-day) | 许可证[c] | 注解 |
---|---|---|---|---|---|---|---|
GPT-1 | 2018年6月 | OpenAI | 0.117 | 1[1] | MIT[2] | 首个GPT模型,为仅解码器transformer。 在8个P600GPU上训练了30天。 | |
BERT | 2018年10月 | 0.340[3] | 33亿单词[3] | 9[4] | Apache 2.0[5] | 这是一个早期且有影响力的语言模型。[6] 仅用于编码器,因此并非为提示或生成而构建。[7] 在 64 个 TPUv2 芯片上训练耗时 4 天。[8] | |
T5 | 2019年10月 | 11[9] | 340亿 tokens[9] | Apache 2.0[10] | 许多Google项目的基础模型,例如Imagen。[11] | ||
XLNet | 2019年6月 | 0.340[12] | 330亿单词 | 330 | Apache 2.0[13] | 作为BERT的替代,设计为仅编码器 。在512个TPU v3芯片上训练了5.5天。[14] | |
GPT-2 | 2019年2月 | OpenAI | 1.5[15] | 40 GB[16] (~100亿 tokens)[17] | 28[18] | MIT[19] | 在32个TPU v3芯片上训练了一周。[18] |
GPT-3 | 2020年5月 | OpenAI | 175[20] | 3000亿 tokens[17] | 3640[21] | Proprietary | A fine-tuned variant of GPT-3, termed GPT-3.5, was made available to the public through a web interface called ChatGPT in 2022.[22] |
GPT-Neo | 2021年3月 | EleutherAI | 2.7[23] | 825 GiB[24] | MIT[25] | The first of a series of free GPT-3 alternatives released by EleutherAI. GPT-Neo outperformed an equivalent-size GPT-3 model on some benchmarks, but was significantly worse than the largest GPT-3.[25] | |
GPT-J | 2021年6月 | EleutherAI | 6[26] | 825 GiB[24] | 200[27] | Apache 2.0 | GPT-3-style language model |
Megatron-Turing NLG | 2021年10月 [28] | Microsoft and Nvidia | 530[29] | 338.6 billion tokens[29] | 38000[30] | Restricted web access | Trained for 3 months on over 2000 A100 GPUs on the NVIDIA Selene Supercomputer, for over 3 million GPU-hours.[30] |
Ernie 3.0 Titan | 2021年12月 | Baidu | 260[31] | 4 Tb | Proprietary | Chinese-language LLM. Ernie Bot is based on this model. | |
Claude[32] | 2021年12月 | Anthropic | 52[33] | 400 billion tokens[33] | beta | Fine-tuned for desirable behavior in conversations.[34] | |
GLaM (Generalist Language Model) | 2021年12月 | 1200[35] | 1.6 trillion tokens[35] | 5600[35] | Proprietary | Sparse mixture of experts model, making it more expensive to train but cheaper to run inference compared to GPT-3. | |
Gopher | 2021年12月 | DeepMind | 280[36] | 300 billion tokens[37] | 5833[38] | Proprietary | Later developed into the Chinchilla model. |
LaMDA (Language Models for Dialog Applications) | 2022年1月 | 137[39] | 1.56T words,[39] 168 billion tokens[37] | 4110[40] | Proprietary | Specialized for response generation in conversations. | |
GPT-NeoX | 2022年2月 | EleutherAI | 20[41] | 825 GiB[24] | 740[27] | Apache 2.0 | based on the Megatron architecture |
Chinchilla | 2022年3月 | DeepMind | 70[42] | 1.4 trillion tokens[42][37] | 6805[38] | Proprietary | Reduced-parameter model trained on more data. Used in the Sparrow bot. Often cited for its neural scaling law. |
PaLM (Pathways Language Model) | 2022年4月 | 540[43] | 768 billion tokens[42] | 29,250[38] | Proprietary | Trained for ~60 days on ~6000 TPU v4 chips.[38] 截至2024年10月[update], it is the largest dense Transformer published. | |
OPT (Open Pretrained Transformer) | 2022年5月 | Meta | 175[44] | 180 billion tokens[45] | 310[27] | Non-commercial research[d] | GPT-3 architecture with some adaptations from Megatron. Uniquely, the training logbook written by the team was published.[46] |
YaLM 100B | 2022年6月 | Yandex | 100[47] | 1.7TB[47] | Apache 2.0 | English-Russian model based on Microsoft's Megatron-LM. | |
Minerva | 2022年6月 | 540[48] | 38.5B tokens from webpages filtered for mathematical content and from papers submitted to the arXiv preprint server[48] | Proprietary | For solving "mathematical and scientific questions using step-by-step reasoning".[49] Initialized from PaLM models, then finetuned on mathematical and scientific data. | ||
BLOOM | 2022年7月 | Large collaboration led by Hugging Face | 175[50] | 350 billion tokens (1.6TB)[51] | Responsible AI | Essentially GPT-3 but trained on a multi-lingual corpus (30% English excluding programming languages) | |
Galactica | 2022年11月 | Meta | 120 | 106 billion tokens[52] | 未知 | CC-BY-NC-4.0 | Trained on scientific text and modalities. |
AlexaTM (Teacher Models) | 2022年11月 | Amazon | 20[53] | 1.3 trillion[54] | proprietary[55] | bidirectional sequence-to-sequence architecture | |
LLaMA (Large Language Model Meta AI) | 2023年2月 | Meta AI | 65[56] | 1.4 trillion[56] | 6300[57] | Non-commercial research[e] | Corpus has 20 languages. "Overtrained" (compared to Chinchilla scaling law) for better performance with fewer parameters.[56] |
GPT-4 | 2023年3月 | OpenAI | 未知[f] (According to rumors: 1760)[59] | 未知 | 未知 | proprietary | Available for ChatGPT Plus users and used in several products. |
Chameleon | 2024年6月 | Meta AI | 34[60] | 4.4 trillion | |||
Cerebras-GPT | 2023年3月 | Cerebras | 13[61] | 270[27] | Apache 2.0 | Trained with Chinchilla formula. | |
Falcon | 2023年3月 | Technology Innovation Institute | 40[62] | 1 trillion tokens, from RefinedWeb (filtered web text corpus)[63] plus some "curated corpora".[64] | 2800[57] | Apache 2.0[65] | |
BloombergGPT | 2023年3月 | Bloomberg L.P. | 50 | 363 billion token dataset based on Bloomberg's data sources, plus 345 billion tokens from general purpose datasets[66] | Proprietary | Trained on financial data from proprietary sources, for financial tasks. | |
PanGu-Σ | 2023年3月 | Huawei | 1085 | 329 billion tokens[67] | Proprietary | ||
OpenAssistant[68] | 2023年3月 | LAION | 17 | 1.5 trillion tokens | Apache 2.0 | Trained on crowdsourced open data | |
Jurassic-2[69] | 2023年3月 | AI21 Labs | 未知 | 未知 | Proprietary | Multilingual[70] | |
PaLM 2 (Pathways Language Model 2) | 2023年5月 | 340[71] | 3.6 trillion tokens[71] | 85,000[57] | Proprietary | Was used in Bard chatbot.[72] | |
Llama 2 | 2023年7月 | Meta AI | 70[73] | 2 trillion tokens[73] | 21,000 | Llama 2 license | 1.7 million A100-hours.[74] |
Claude 2 | 2023年7月 | Anthropic | 未知 | 未知 | 未知 | Proprietary | Used in Claude chatbot.[75] |
Granite 13b | 2023年7月 | IBM | 未知 | 未知 | 未知 | Proprietary | Used in IBM Watsonx.[76] |
Mistral 7B | 2023年9月 | Mistral AI | 7.3[77] | 未知 | Apache 2.0 | ||
Claude 2.1 | 2023年11月 | Anthropic | 未知 | 未知 | 未知 | Proprietary | Used in Claude chatbot. Has a context window of 200,000 tokens, or ~500 pages.[78] |
Grok-1[79] | 2023年11月 | xAI | 314 | 未知 | 未知 | Apache 2.0 | Used in Grok chatbot. Grok-1 has a context length of 8,192 tokens and has access to X (Twitter).[80] |
Gemini 1.0 | 2023年12月 | Google DeepMind | 未知 | 未知 | 未知 | Proprietary | Multimodal model, comes in three sizes. Used in the chatbot of the same name.[81] |
Mixtral 8x7B | 2023年12月 | Mistral AI | 46.7 | 未知 | 未知 | Apache 2.0 | Outperforms GPT-3.5 and Llama 2 70B on many benchmarks.[82] Mixture of experts model, with 12.9 billion parameters activated per token.[83] |
Mixtral 8x22B | 2024年4月 | Mistral AI | 141 | 未知 | 未知 | Apache 2.0 | [84] |
DeepSeek LLM | 2023年11月29日 | DeepSeek | 67 | 2T tokens[85] | 12,000} | DeepSeek License | Trained on English and Chinese text. 1e24 FLOPs for 67B. 1e23 FLOPs for 7B[85] |
Phi-2 | 2023年12月 | Microsoft | 2.7 | 1.4T tokens | 419[86] | MIT | Trained on real and synthetic "textbook-quality" data, for 14 days on 96 A100 GPUs.[86] |
Gemini 1.5 | 2024年2月 | Google DeepMind | 未知 | 未知 | 未知 | Proprietary | Multimodal model, based on a Mixture-of-Experts (MoE) architecture. Context window above 1 million tokens.[87] |
Gemini Ultra | 2024年2月 | Google DeepMind | 未知 | 未知 | 未知 | ||
Gemma | 2024年2月 | Google DeepMind | 7 | 6T tokens | 未知 | Gemma Terms of Use[88] | |
Claude 3 | 2024年3月 | Anthropic | 未知 | 未知 | 未知 | Proprietary | Includes three models, Haiku, Sonnet, and Opus.[89] |
Nova | 2024年10月 | Rubik's AI | 未知 | 未知 | 未知 | Proprietary | Includes three models, Nova-Instant, Nova-Air, and Nova-Pro. |
DBRX | 2024年3月 | Databricks and Mosaic ML | 136 | 12T Tokens | Databricks Open Model License | Training cost 10 million USD. | |
Fugaku-LLM | 2024年5月 | Fujitsu, Tokyo Institute of Technology, etc. | 13 | 380B Tokens | The largest model ever trained on CPU-only, on the Fugaku.[90] | ||
Phi-3 | 2024年4月 | Microsoft | 14[91] | 4.8T Tokens | MIT | Microsoft markets them as "small language model".[92] | |
Granite Code Models | 2024年5月 | IBM | 未知 | 未知 | 未知 | Apache 2.0 | |
Qwen2 | 2024年6月 | Alibaba Cloud | 72[93] | 3T Tokens | 未知 | Qwen License | Multiple sizes, the smallest being 0.5B. |
DeepSeek V2 | 2024年6月 | DeepSeek | 236 | 8.1T tokens | 28,000 | DeepSeek License | 1.4M hours on H800.[94] |
Nemotron-4 | 2024年6月 | Nvidia | 340 | 9T Tokens | 200,000 | NVIDIA Open Model License | Trained for 1 epoch. Trained on 6144 H100 GPUs between December 2023 and May 2024.[95][96] |
Llama 3.1 | 2024年7月 | Meta AI | 405 | 15.6T tokens | 440,000 | Llama 3 license | 405B version took 31 million hours on H100-80GB, at 3.8E25 FLOPs.[97][98] |
DeepSeek V3 | 2024年12月 | DeepSeek | 671 | 14.8T tokens | 56,000 | DeepSeek License | 2.788M hours on H800 GPUs.[99] |
Amazon Nova | 2024年12月 | Amazon | 未知 | 未知 | 未知 | Proprietary | Includes three models, Nova Micro, Nova Lite, and Nova Pro[100] |
DeepSeek R1 | 2025年1月 | DeepSeek | 671 | 未知 | 未知 | MIT | No pretraining. Reinforcement-learned upon V3-Base.[101][102] |
Qwen2.5 | 2025年1月 | Alibaba | 72 | 18T tokens | 未知 | Qwen License | [103] |
MiniMax-Text-01 | January 2025 | Minimax | 456 | 4.7T tokens[104] | 未知 | Minimax Model license | [105][104] |
Gemini 2.0 | 2025年2月 | Google DeepMind | 未知 | 未知 | 未知 | Proprietary | Three models released: Flash, Flash-Lite and Pro[106][107][108] |
参见
注释
- ^ 这是描述模型架构的文档首次发布的日期。
- ^ 在许多情况下,研究人员会发布或报告具有不同尺寸的多个模型版本。在这些情况下,此处会列出最大模型的尺寸。
- ^ 这是预训练模型权重的许可证。在几乎所有情况下,训练代码本身都是开源的或可以轻松复制。
- ^ The smaller models including 66B are publicly available, while the 175B model is available on request.
- ^ Facebook's license and distribution scheme restricted access to approved researchers, but the model weights were leaked and became widely available.
- ^ As stated in Technical report: "Given both the competitive landscape and the safety implications of large-scale models like GPT-4, this report contains no further details about the architecture (including model size), hardware, training compute, dataset construction, training method ..."[58]
参考资料
- ^ Improving language understanding with unsupervised learning. openai.com. June 11, 2018 [2023-03-18]. (原始内容存档于2023-03-18).
- ^ finetune-transformer-lm. GitHub. [2 January 2024]. (原始内容存档于19 May 2023).
- ^ 3.0 3.1 Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 11 October 2018. arXiv:1810.04805v2
[cs.CL].
- ^ Prickett, Nicole Hemsoth. Cerebras Shifts Architecture To Meet Massive AI/ML Models. The Next Platform. 2021-08-24 [2023-06-20]. (原始内容存档于2023-06-20).
- ^ BERT. March 13, 2023 [March 13, 2023]. (原始内容存档于January 13, 2021) –通过GitHub.
- ^ Manning, Christopher D. Human Language Understanding & Reasoning. Daedalus. 2022, 151 (2): 127–138 [2023-03-09]. S2CID 248377870. doi:10.1162/daed_a_01905
. (原始内容存档于2023-11-17).
- ^ Patel, Ajay; Li, Bryan; Rasooli, Mohammad Sadegh; Constant, Noah; Raffel, Colin; Callison-Burch, Chris. Bidirectional Language Models Are Also Few-shot Learners. 2022. arXiv:2209.14500
[cs.LG].
- ^ Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 11 October 2018. arXiv:1810.04805v2
[cs.CL].
- ^ 9.0 9.1 Raffel, Colin; Shazeer, Noam; Roberts, Adam; Lee, Katherine; Narang, Sharan; Matena, Michael; Zhou, Yanqi; Li, Wei; Liu, Peter J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research. 2020, 21 (140): 1–67. ISSN 1533-7928. arXiv:1910.10683
.
- ^ google-research/text-to-text-transfer-transformer, Google Research, 2024-04-02 [2024-04-04], (原始内容存档于2024-03-29)
- ^ Imagen: Text-to-Image Diffusion Models. imagen.research.google. [2024-04-04]. (原始内容存档于2024-03-27).
- ^ Pretrained models — transformers 2.0.0 documentation. huggingface.co. [2024-08-05]. (原始内容存档于2024-08-05).
- ^ xlnet. GitHub. [2 January 2024]. (原始内容存档于2 January 2024).
- ^ Yang, Zhilin; Dai, Zihang; Yang, Yiming; Carbonell, Jaime; Salakhutdinov, Ruslan; Le, Quoc V. XLNet: Generalized Autoregressive Pretraining for Language Understanding. 2 January 2020. arXiv:1906.08237
[cs.CL].
- ^ GPT-2: 1.5B Release. OpenAI. 2019-11-05 [2019-11-14]. (原始内容存档于2019-11-14) (英语).
- ^ Better language models and their implications. openai.com. [2023-03-13]. (原始内容存档于2023-03-16).
- ^ 17.0 17.1 OpenAI's GPT-3 Language Model: A Technical Overview. lambdalabs.com. 3 June 2020 [13 March 2023]. (原始内容存档于27 March 2023).
- ^ 18.0 18.1 openai-community/gpt2-xl · Hugging Face. huggingface.co. [2024-07-24]. (原始内容存档于2024-07-24).
- ^ gpt-2. GitHub. [13 March 2023]. (原始内容存档于11 March 2023).
- ^ Wiggers, Kyle. The emerging types of language models and why they matter. TechCrunch. 28 April 2022 [9 March 2023]. (原始内容存档于16 March 2023).
- ^ Table D.1 in Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel; Krueger, Gretchen; Henighan, Tom; Child, Rewon; Ramesh, Aditya; Ziegler, Daniel M.; Wu, Jeffrey; Winter, Clemens; Hesse, Christopher; Chen, Mark; Sigler, Eric; Litwin, Mateusz; Gray, Scott; Chess, Benjamin; Clark, Jack; Berner, Christopher; McCandlish, Sam; Radford, Alec; Sutskever, Ilya; Amodei, Dario. Language Models are Few-Shot Learners. May 28, 2020. arXiv:2005.14165v4
[cs.CL].
- ^ ChatGPT: Optimizing Language Models for Dialogue. OpenAI. 2022-11-30 [2023-01-13]. (原始内容存档于2022-11-30).
- ^ GPT Neo. March 15, 2023 [March 12, 2023]. (原始内容存档于March 12, 2023) –通过GitHub.
- ^ 24.0 24.1 24.2 Gao, Leo; Biderman, Stella; Black, Sid; Golding, Laurence; Hoppe, Travis; Foster, Charles; Phang, Jason; He, Horace; Thite, Anish; Nabeshima, Noa; Presser, Shawn; Leahy, Connor. The Pile: An 800GB Dataset of Diverse Text for Language Modeling. 31 December 2020. arXiv:2101.00027
[cs.CL].
- ^ 25.0 25.1 Iyer, Abhishek. GPT-3's free alternative GPT-Neo is something to be excited about. VentureBeat. 15 May 2021 [13 March 2023]. (原始内容存档于9 March 2023).
- ^ GPT-J-6B: An Introduction to the Largest Open Source GPT Model | Forefront. www.forefront.ai. [2023-02-28]. (原始内容存档于2023-03-09).
- ^ 27.0 27.1 27.2 27.3 Dey, Nolan; Gosal, Gurpreet; Zhiming; Chen; Khachane, Hemant; Marshall, William; Pathria, Ribhu; Tom, Marvin; Hestness, Joel. Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster. 2023-04-01. arXiv:2304.03208
[cs.LG].
- ^ Alvi, Ali; Kharya, Paresh. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World's Largest and Most Powerful Generative Language Model. Microsoft Research. 11 October 2021 [13 March 2023]. (原始内容存档于13 March 2023).
- ^ 29.0 29.1 Smith, Shaden; Patwary, Mostofa; Norick, Brandon; LeGresley, Patrick; Rajbhandari, Samyam; Casper, Jared; Liu, Zhun; Prabhumoye, Shrimai; Zerveas, George; Korthikanti, Vijay; Zhang, Elton; Child, Rewon; Aminabadi, Reza Yazdani; Bernauer, Julie; Song, Xia. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. 2022-02-04. arXiv:2201.11990
[cs.CL].
- ^ 30.0 30.1 Rajbhandari, Samyam; Li, Conglong; Yao, Zhewei; Zhang, Minjia; Aminabadi, Reza Yazdani; Awan, Ammar Ahmad; Rasley, Jeff; He, Yuxiong, DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale, 2022-07-21, arXiv:2201.05596
- ^ Wang, Shuohuan; Sun, Yu; Xiang, Yang; Wu, Zhihua; Ding, Siyu; Gong, Weibao; Feng, Shikun; Shang, Junyuan; Zhao, Yanbin; Pang, Chao; Liu, Jiaxiang; Chen, Xuyi; Lu, Yuxiang; Liu, Weixin; Wang, Xi; Bai, Yangfan; Chen, Qiuliang; Zhao, Li; Li, Shiyong; Sun, Peng; Yu, Dianhai; Ma, Yanjun; Tian, Hao; Wu, Hua; Wu, Tian; Zeng, Wei; Li, Ge; Gao, Wen; Wang, Haifeng. ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation. December 23, 2021. arXiv:2112.12731
[cs.CL].
- ^ Product. Anthropic. [14 March 2023]. (原始内容存档于16 March 2023).
- ^ 33.0 33.1 Askell, Amanda; Bai, Yuntao; Chen, Anna; et al. A General Language Assistant as a Laboratory for Alignment. 9 December 2021. arXiv:2112.00861
[cs.CL].
- ^ Bai, Yuntao; Kadavath, Saurav; Kundu, Sandipan; et al. Constitutional AI: Harmlessness from AI Feedback. 15 December 2022. arXiv:2212.08073
[cs.CL].
- ^ 35.0 35.1 35.2 Dai, Andrew M; Du, Nan. More Efficient In-Context Learning with GLaM. ai.googleblog.com. December 9, 2021 [2023-03-09]. (原始内容存档于2023-03-12).
- ^ Language modelling at scale: Gopher, ethical considerations, and retrieval. www.deepmind.com. 8 December 2021 [20 March 2023]. (原始内容存档于20 March 2023).
- ^ 37.0 37.1 37.2 Hoffmann, Jordan; Borgeaud, Sebastian; Mensch, Arthur; et al. Training Compute-Optimal Large Language Models. 29 March 2022. arXiv:2203.15556
[cs.CL].
- ^ 38.0 38.1 38.2 38.3 Table 20 and page 66 of PaLM: Scaling Language Modeling with Pathways 互联网档案馆的存檔,存档日期2023-06-10.
- ^ 39.0 39.1 Cheng, Heng-Tze; Thoppilan, Romal. LaMDA: Towards Safe, Grounded, and High-Quality Dialog Models for Everything. ai.googleblog.com. January 21, 2022 [2023-03-09]. (原始内容存档于2022-03-25).
- ^ Thoppilan, Romal; De Freitas, Daniel; Hall, Jamie; Shazeer, Noam; Kulshreshtha, Apoorv; Cheng, Heng-Tze; Jin, Alicia; Bos, Taylor; Baker, Leslie; Du, Yu; Li, YaGuang; Lee, Hongrae; Zheng, Huaixiu Steven; Ghafouri, Amin; Menegali, Marcelo. LaMDA: Language Models for Dialog Applications. 2022-01-01. arXiv:2201.08239
[cs.CL].
- ^ Black, Sidney; Biderman, Stella; Hallahan, Eric; et al. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models. Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models: 95–136. 2022-05-01 [2022-12-19]. (原始内容存档于2022-12-10).
- ^ 42.0 42.1 42.2 Hoffmann, Jordan; Borgeaud, Sebastian; Mensch, Arthur; Sifre, Laurent. An empirical analysis of compute-optimal large language model training. Deepmind Blog. 12 April 2022 [9 March 2023]. (原始内容存档于13 April 2022).
- ^ Narang, Sharan; Chowdhery, Aakanksha. Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance. ai.googleblog.com. April 4, 2022 [2023-03-09]. (原始内容存档于2022-04-04) (英语).
- ^ Susan Zhang; Mona Diab; Luke Zettlemoyer. Democratizing access to large-scale language models with OPT-175B. ai.facebook.com. [2023-03-12]. (原始内容存档于2023-03-12).
- ^ Zhang, Susan; Roller, Stephen; Goyal, Naman; Artetxe, Mikel; Chen, Moya; Chen, Shuohui; Dewan, Christopher; Diab, Mona; Li, Xian; Lin, Xi Victoria; Mihaylov, Todor; Ott, Myle; Shleifer, Sam; Shuster, Kurt; Simig, Daniel; Koura, Punit Singh; Sridhar, Anjali; Wang, Tianlu; Zettlemoyer, Luke. OPT: Open Pre-trained Transformer Language Models. 21 June 2022. arXiv:2205.01068
[cs.CL].
- ^ metaseq/projects/OPT/chronicles at main · facebookresearch/metaseq. GitHub. [2024-10-18] (英语).
- ^ 47.0 47.1 Khrushchev, Mikhail; Vasilev, Ruslan; Petrov, Alexey; Zinov, Nikolay, YaLM 100B, 2022-06-22 [2023-03-18], (原始内容存档于2023-06-16)
- ^ 48.0 48.1 Lewkowycz, Aitor; Andreassen, Anders; Dohan, David; Dyer, Ethan; Michalewski, Henryk; Ramasesh, Vinay; Slone, Ambrose; Anil, Cem; Schlag, Imanol; Gutman-Solo, Theo; Wu, Yuhuai; Neyshabur, Behnam; Gur-Ari, Guy; Misra, Vedant. Solving Quantitative Reasoning Problems with Language Models. 30 June 2022. arXiv:2206.14858
[cs.CL].
- ^ Minerva: Solving Quantitative Reasoning Problems with Language Models. ai.googleblog.com. 30 June 2022 [20 March 2023].
- ^ Ananthaswamy, Anil. In AI, is bigger always better?. Nature. 8 March 2023, 615 (7951): 202–205 [9 March 2023]. Bibcode:2023Natur.615..202A. PMID 36890378. S2CID 257380916. doi:10.1038/d41586-023-00641-w. (原始内容存档于16 March 2023).
- ^ bigscience/bloom · Hugging Face. huggingface.co. [2023-03-13]. (原始内容存档于2023-04-12).
- ^ Taylor, Ross; Kardas, Marcin; Cucurull, Guillem; Scialom, Thomas; Hartshorn, Anthony; Saravia, Elvis; Poulton, Andrew; Kerkez, Viktor; Stojnic, Robert. Galactica: A Large Language Model for Science. 16 November 2022. arXiv:2211.09085
[cs.CL].
- ^ 20B-parameter Alexa model sets new marks in few-shot learning. Amazon Science. 2 August 2022 [12 March 2023]. (原始内容存档于15 March 2023).
- ^ Soltan, Saleh; Ananthakrishnan, Shankar; FitzGerald, Jack; et al. AlexaTM 20B: Few-Shot Learning Using a Large-Scale Multilingual Seq2Seq Model. 3 August 2022. arXiv:2208.01448
[cs.CL].
- ^ AlexaTM 20B is now available in Amazon SageMaker JumpStart | AWS Machine Learning Blog. aws.amazon.com. 17 November 2022 [13 March 2023]. (原始内容存档于13 March 2023).
- ^ 56.0 56.1 56.2 Introducing LLaMA: A foundational, 65-billion-parameter large language model. Meta AI. 24 February 2023 [9 March 2023]. (原始内容存档于3 March 2023).
- ^ 57.0 57.1 57.2 The Falcon has landed in the Hugging Face ecosystem. huggingface.co. [2023-06-20]. (原始内容存档于2023-06-20).
- ^ GPT-4 Technical Report (PDF). OpenAI. 2023 [March 14, 2023]. (原始内容存档 (PDF)于March 14, 2023).
- ^ Schreiner, Maximilian. GPT-4 architecture, datasets, costs and more leaked. THE DECODER. 2023-07-11 [2024-07-26]. (原始内容存档于2023-07-12) (美国英语).
- ^ Dickson, Ben. Meta introduces Chameleon, a state-of-the-art multimodal model. VentureBeat. 22 May 2024.
- ^ Dey, Nolan. Cerebras-GPT: A Family of Open, Compute-efficient, Large Language Models. Cerebras. March 28, 2023 [March 28, 2023]. (原始内容存档于March 28, 2023).
- ^ Abu Dhabi-based TII launches its own version of ChatGPT. tii.ae. [2023-04-03]. (原始内容存档于2023-04-03).
- ^ Penedo, Guilherme; Malartic, Quentin; Hesslow, Daniel; Cojocaru, Ruxandra; Cappelli, Alessandro; Alobeidli, Hamza; Pannier, Baptiste; Almazrouei, Ebtesam; Launay, Julien. The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only. 2023-06-01. arXiv:2306.01116
[cs.CL].
- ^ tiiuae/falcon-40b · Hugging Face. huggingface.co. 2023-06-09 [2023-06-20].
- ^ UAE's Falcon 40B, World's Top-Ranked AI Model from Technology Innovation Institute, is Now Royalty-Free 互联网档案馆的存檔,存档日期2024-02-08., 31 May 2023
- ^ Wu, Shijie; Irsoy, Ozan; Lu, Steven; Dabravolski, Vadim; Dredze, Mark; Gehrmann, Sebastian; Kambadur, Prabhanjan; Rosenberg, David; Mann, Gideon. BloombergGPT: A Large Language Model for Finance. March 30, 2023. arXiv:2303.17564
[cs.LG].
- ^ Ren, Xiaozhe; Zhou, Pingyi; Meng, Xinfan; Huang, Xinjing; Wang, Yadao; Wang, Weichao; Li, Pengfei; Zhang, Xiaoda; Podolskiy, Alexander; Arshinov, Grigory; Bout, Andrey; Piontkovskaya, Irina; Wei, Jiansheng; Jiang, Xin; Su, Teng; Liu, Qun; Yao, Jun. PanGu-Σ: Towards Trillion Parameter Language Model with Sparse Heterogeneous Computing. March 19, 2023. arXiv:2303.10845
[cs.CL].
- ^ Köpf, Andreas; Kilcher, Yannic; von Rütte, Dimitri; Anagnostidis, Sotiris; Tam, Zhi-Rui; Stevens, Keith; Barhoum, Abdullah; Duc, Nguyen Minh; Stanley, Oliver; Nagyfi, Richárd; ES, Shahul; Suri, Sameer; Glushkov, David; Dantuluri, Arnav; Maguire, Andrew. OpenAssistant Conversations – Democratizing Large Language Model Alignment. 2023-04-14. arXiv:2304.07327
[cs.CL].
- ^ Wrobel, Sharon. Tel Aviv startup rolls out new advanced AI language model to rival OpenAI. www.timesofisrael.com. [2023-07-24]. (原始内容存档于2023-07-24).
- ^ Wiggers, Kyle. With Bedrock, Amazon enters the generative AI race. TechCrunch. 2023-04-13 [2023-07-24]. (原始内容存档于2023-07-24).
- ^ 71.0 71.1 Elias, Jennifer. Google's newest A.I. model uses nearly five times more text data for training than its predecessor. CNBC. 16 May 2023 [18 May 2023]. (原始内容存档于16 May 2023).
- ^ Introducing PaLM 2. Google. May 10, 2023 [May 18, 2023]. (原始内容存档于May 18, 2023).
- ^ 73.0 73.1 Introducing Llama 2: The Next Generation of Our Open Source Large Language Model. Meta AI. 2023 [2023-07-19]. (原始内容存档于2024-01-05).
- ^ llama/MODEL_CARD.md at main · meta-llama/llama. GitHub. [2024-05-28]. (原始内容存档于2024-05-28).
- ^ Claude 2. anthropic.com. [12 December 2023]. (原始内容存档于15 December 2023).
- ^ Nirmal, Dinesh. Building AI for business: IBM's Granite foundation models. IBM Blog. 2023-09-07 [2024-08-11]. (原始内容存档于2024-07-22) (美国英语).
- ^ Announcing Mistral 7B. Mistral. 2023 [2023-10-06]. (原始内容存档于2024-01-06).
- ^ Introducing Claude 2.1. anthropic.com. [12 December 2023]. (原始内容存档于15 December 2023).
- ^ xai-org/grok-1, xai-org, 2024-03-19 [2024-03-19], (原始内容存档于2024-05-28)
- ^ Grok-1 model card. x.ai. [12 December 2023].
- ^ Gemini – Google DeepMind. deepmind.google. [12 December 2023]. (原始内容存档于8 December 2023).
- ^ Franzen, Carl. Mistral shocks AI community as latest open source model eclipses GPT-3.5 performance. VentureBeat. 11 December 2023 [12 December 2023]. (原始内容存档于11 December 2023).
- ^ Mixtral of experts. mistral.ai. 11 December 2023 [12 December 2023]. (原始内容存档于13 February 2024).
- ^ AI, Mistral. Cheaper, Better, Faster, Stronger. mistral.ai. 2024-04-17 [2024-05-05]. (原始内容存档于2024-05-05).
- ^ 85.0 85.1 DeepSeek-AI; Bi, Xiao; Chen, Deli; Chen, Guanting; Chen, Shanhuang; Dai, Damai; Deng, Chengqi; Ding, Honghui; Dong, Kai, DeepSeek LLM: Scaling Open-Source Language Models with Longtermism, 2024-01-05, arXiv:2401.02954
- ^ 86.0 86.1 Hughes, Alyssa. Phi-2: The surprising power of small language models. Microsoft Research. 12 December 2023 [13 December 2023]. (原始内容存档于12 December 2023).
- ^ Our next-generation model: Gemini 1.5. Google. 15 February 2024 [16 February 2024]. (原始内容存档于16 February 2024).
This means 1.5 Pro can process vast amounts of information in one go — including 1 hour of video, 11 hours of audio, codebases with over 30,000 lines of code or over 700,000 words. In our research, we’ve also successfully tested up to 10 million tokens.
- ^ Gemma –通过GitHub.
- ^ Introducing the next generation of Claude. www.anthropic.com. [2024-03-04]. (原始内容存档于2024-03-04).
- ^ Fugaku-LLM/Fugaku-LLM-13B · Hugging Face. huggingface.co. [2024-05-17]. (原始内容存档于2024-05-17).
- ^ Phi-3. azure.microsoft.com. 23 April 2024 [2024-04-28]. (原始内容存档于2024-04-27).
- ^ Phi-3 Model Documentation. huggingface.co. [2024-04-28]. (原始内容存档于2024-05-13).
- ^ Qwen2. GitHub. [2024-06-17]. (原始内容存档于2024-06-17).
- ^ DeepSeek-AI; Liu, Aixin; Feng, Bei; Wang, Bin; Wang, Bingxuan; Liu, Bo; Zhao, Chenggang; Dengr, Chengqi; Ruan, Chong, DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model, 2024-06-19, arXiv:2405.04434
- ^ nvidia/Nemotron-4-340B-Base · Hugging Face. huggingface.co. 2024-06-14 [2024-06-15]. (原始内容存档于2024-06-15).
- ^ Nemotron-4 340B | Research. research.nvidia.com. [2024-06-15]. (原始内容存档于2024-06-15).
- ^ "The Llama 3 Herd of Models" (July 23, 2024) Llama Team, AI @ Meta
- ^ llama-models/models/llama3_1/MODEL_CARD.md at main · meta-llama/llama-models. GitHub. [2024-07-23]. (原始内容存档于2024-07-23) (英语).
- ^ deepseek-ai/DeepSeek-V3, DeepSeek, 2024-12-26 [2024-12-26]
- ^ Amazon Nova Micro, Lite, and Pro - AWS AI Service Cards3, Amazon, 2024-12-27 [2024-12-27]
- ^ deepseek-ai/DeepSeek-R1, DeepSeek, 2025-01-21 [2025-01-21]
- ^ DeepSeek-AI; Guo, Daya; Yang, Dejian; Zhang, Haowei; Song, Junxiao; Zhang, Ruoyu; Xu, Runxin; Zhu, Qihao; Ma, Shirong, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, 2025-01-22, arXiv:2501.12948
- ^ Qwen; Yang, An; Yang, Baosong; Zhang, Beichen; Hui, Binyuan; Zheng, Bo; Yu, Bowen; Li, Chengyuan; Liu, Dayiheng, Qwen2.5 Technical Report, 2025-01-03, arXiv:2412.15115
- ^ 104.0 104.1 MiniMax; Li, Aonian; Gong, Bangwei; Yang, Bo; Shan, Boji; Liu, Chang; Zhu, Cheng; Zhang, Chunhao; Guo, Congchao, MiniMax-01: Scaling Foundation Models with Lightning Attention, 2025-01-14 [2025-01-26], arXiv:2501.08313
- ^ MiniMax-AI/MiniMax-01, MiniMax, 2025-01-26 [2025-01-26]
- ^ Kavukcuoglu, Koray. Gemini 2.0 is now available to everyone. Google. [6 February 2025].
- ^ Gemini 2.0: Flash, Flash-Lite and Pro. Google for Developers. [6 February 2025].
- ^ Franzen, Carl. Google launches Gemini 2.0 Pro, Flash-Lite and connects reasoning model Flash Thinking to YouTube, Maps and Search. VentureBeat. 5 February 2025 [6 February 2025].