活性係數(英語:Activity coefficient),又称活性因子(英語:Activity factor),是热力学中的一个系数,反映的是真实溶液中某组分i的行为偏离理想溶液的程度[1],量纲为1。引入活性系数后,适用于理想溶液的各种关系可以相应修正为适用于真实溶液。类似的,逸度系数是表示真实气体混合物中某组分和理想行为的偏离的系数。
定义
在理想溶液中,溶液组分i遵循拉乌尔定律:

其中
是组分i在溶液中的摩尔分数,
和
分别是组分i的分压和饱和蒸气压。
而组分i的化学势
可由下式表达:

这里的
代表组分i在标准状态下的化学势。而在真实溶液中,组分i-组分i间的作用力和组分i-其他组分间的作用力并不相等,导致了组分i并不满足拉乌尔定律,其化学势也不满足以上关系,即偏离了理想溶液的行为,为此吉尔伯特·牛顿·路易斯引入了活性和活性系数的概念。
定义:

这里的
是组分i以摩尔分数所表示的活性,
则是组分i用摩尔分数所表示的活性系数。引入活性和活性系数后,拉乌尔定律可以修正为:

组分i的化学势则可以修正為:

真实溶液的浓度越稀,溶剂的活性系数就越接近1,活性和摩尔分数近乎相等,其行为越接近理想溶液。浓度越高,活性系数越偏离1,真实溶液的行为偏差理想溶液就越大,比如对于浓度较高的电解质溶液,其活性就无法用摩尔分数取代,这一点在电化学和土壤化学中十分常见[2]。
平衡常数的修正
当化学反应:
达到化学平衡时,反应物化学势的和等于生成物化学势的和,反应的吉布斯能变化
为0,即:

将每种物质用活性所表示的化学势表达式代入其中得到


其中的
是反应在标准状况下的吉布斯能变化
于是

此时的平衡常数由平时的
修正为:
![{\displaystyle K={\frac {[S]^{\sigma }[T]^{\tau }{[A]^{\alpha }[B]^{\beta }\times {\frac {\gamma _{S}^{\sigma }\gamma _{T}^{\tau }{\gamma _{A}^{\alpha }\gamma _{B}^{\beta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/557cd8e660e013aa553b78d42d41b14c46825152)
活性系数的测量和计算方法
活性系数可以通过实验测量和理论计算结合的方法求出,常见方法有蒸气压法、德拜-休克尔极限公式法、图解积分法和测量电动势法等:
蒸汽压法
引入活性系数后,拉乌尔定律修正为:

可通过测定某一浓度下溶液蒸汽压和饱和蒸汽压的比值,除以其摩尔分数,即为活性系数。
德拜-休克尔极限公式法
德拜-休克尔极限公式给出了某种离子i的活性系数和离子强度的关系:
[3]
其中
是离子所带的电荷数,
是溶液中的离子强度,
是和溶剂有关的常数。
但德拜-休克尔极限公式只适用于稀溶液,对于较高浓度的电解质溶液,需要使用戴维斯公式[4]或pitzer公式[5]等修正后的方法。
图解积分法
对于双组分溶液,根据吉布斯-杜安方程,於恆壓P和恆溫T下

根据用活性系数表示的化学势

可得

代入吉布斯-杜亥姆方程:

注意到

所以

这样,在已知其中一种组分的活性系数之后,可以通过积分求出另一种活性系数[6],或用这一关系检验所测得的活性系数数值是否具有热力学一致性。
相關條目
参考文献