蔡勒公式

蔡勒公式(德語:Zellers Kongruenz),是一種計算任何一日屬一星期中哪一日的演算法,由十九世紀德國數學家克里斯提安·蔡勒德语Christian Zeller推算出來。

公式

or

公式都是基於公曆的置閏規則來考慮。

公式中的符號含義如下:

  • w:星期(计算所得的数值对应的星期:0-星期日;1-星期一;2-星期二;3-星期三;4-星期四;5-星期五;6-星期六)[註 1]
  • c:年份前两位数
  • y:年份后两位数
  • m:月(m的取值範圍為3至14,即在蔡勒公式中,某年的1、2月要看作上一年的13、14月來計算,比如2003年1月1日要看作2002年的13月1日來計算)
  • d:日
  • [ ]:稱作高斯符號,代表向下取整,即,取不大于原数的最大整數。
  • mod:同餘(這裡代表括號裡的答案除以7後的餘數)

因为

可能为负数,所以当出现负数的情况下不能直接mod 7。编写成代码的时候如果两个操作数中只有一个负数,求模的结果取决于机器,也就是说某些情况下w在一些机器上为负数,但是在某一些机器上w不一定为负数(例如:21%-5的结果取决于机器,可能得到1或-4),对于产生负数这种情况可将原来公式分为两步:


若为一月二月,则看作为去年的13月和14月输入,同时在年份上减一。以上各式中的“%”符号表示取余运算。

例子

對2006年4月4日而言,代入公式算出:

得知為星期二。 

儒略曆時期公式

若要計算的日期是在1582年10月4日或之前的儒略曆實施年代,公式則為:

or

這是因羅馬教宗額我略十三世頒布新曆法(公曆),把1582年10月4日的後一天改為1582年10月15日。此一公式也要注意前述附註中出现负数的情况。

註解

  1. ^ 原版公式后面是没有“-1”的,西方通常以星期日作为一个星期的第一天,在ISO的版本则出现“-1”。