豪猪亚目

豪猪亚目
化石时期:始新世至现代
水豚 Hydrochoerus hydrochaeris
科学分类 编辑
界: 动物界 Animalia
门: 脊索动物门 Chordata
纲: 哺乳纲 Mammalia
目: 啮齿目 Rodentia
亚目: 豪猪亚目 Hystricomorpha
Brandt, 1855
下目
  • 栉趾鼠下目 Ctenodactylomorphi
  • 豪猪下目 Hystricognathi

豪猪亚目学名:Hystricomorpha)在历史上曾有过许多含义。广义上是指所有具有豪猪型颧弓-咬肌结构(Zygomasseteric system)的啮齿目动物(跳鼠类除外),包括豪猪下目(Hystricognathi)、栉趾鼠科(Ctenodactylidae)、鳞尾松鼠科(Anomaluridae)、跳兔科(Pedetidae)。分子及形态学研究表明,将鳞尾松鼠科与跳兔科列入其中是有争议的。根据Carleton与Musser的研究[1],这两科被分为鳞尾松鼠亚目(Anomaluromorpha)。

豪猪亚目(又被称为Entodacrya或Ctenohystrica)的现代定义是指将栉趾鼠与豪猪下目联系起来的分类学假设。[1]支持这一说法有很多形态学以及分子系统发生学的证据。如果此假说是真实的,那传统观点中的松鼠形亚目将被推翻,成为一个并系群

豪猪类动物,或至少是豚鼠小目中的成员,有时会被认为是非啮齿类。[2][3][4]不过大多数分子与遗传学研究都表明啮齿动物是单系群[5][6][7][8][9][10]而支持啮齿类为多系群的证据被认为是源自长枝吸引(long branch attraction)的现象。[11]

豪猪类动物于渐新世早期出现于南美洲[12],这里此前的陆地哺乳动物只有后兽下纲贫齿总目南蹄目。豪猪类是从非洲横渡大西洋到达南美洲的。同一类型的迁徙还发生在灵长目中,这些都发生于南北美洲生物大迁徙之前。不过这些说法至今尚存争议。

分类

以下的分类是根据Marivaux等人对早期啮齿类化石进行的支序分类学分析而来的。[13][14]他们的研究支持豪猪亚目假说,并表明McKenna与Bell定义的先松鼠亚目(Sciuravida)[15]是多系群,因而并不成立。

  • 豪猪亚目 Hystricomorpha
    • 梳齿鼠总科 Ctenodactyloidea
      • 梳齿鼠科 Ctenodactylidae
      • †科 Tammquammyidae
      • 硅藻鼠科 Diatomyidae
      • †豫鼠科 Yuomyidae
      • †馕鼠科 Chapattimyidae
    • 演化支 Hystricognathiformes
      • †查干鼠科 Tsaganomyidae
      • 豪猪下目 Hystricognathi
        • †俾路支鼠科 Baluchimyinae
        • 豪猪科 Hystricidae
        • 菲奥鼠小目(非洲豪猪类)Phiomorpha
          • †长尾菲奥鼠科 Myophiomyidae
          • †钻石鼠科 Diamantomyidae
          • †菲奥鼠科 Phiomyidae
          • †肯尼亚鼠科 Kenyamyidae
          • 岩鼠科 Petromuridae
          • 蔗鼠科 Thryonomyidae
          • 滨鼠科 Bathyergidae
          • †似滨鼠科 Bathyergoididae
        • 豚鼠小目(南美豪猪类)Caviomorpha
          • 美洲豪猪总科 Erethizontoidea
          • 豚鼠总科 Cavioidea
            • †头刺豚鼠科 Cephalomyidae
            • 刺豚鼠科 Dasyproctidae
            • 兔豚鼠科 Cuniculidae
            • †始豚鼠科 Eocardiidae
            • 花背豚鼠科 Dinomyidae
            • 豚鼠科 Caviidae
          • 八齿鼠总科 Octodontoidea
          • 毛丝鼠总科 Chinchilloidea
            • 毛丝鼠科 Chinchillidae
            • †新绒鼠科 Neoepiblemidae
            • 华毛鼠科 Abrocomidae

参考文献

  1. ^ 1.0 1.1 Carleton and Musser, 2005
  2. ^ Graur et al., 1991
  3. ^ D'Erchia et al., 1996
  4. ^ Reyes et al., 2000
  5. ^ Cao et al., 1994
  6. ^ Kuma and Miyata, 1994
  7. ^ Sullivan and Swofford, 1997
  8. ^ Robinson-Rechavi et al., 2000
  9. ^ Lin et al., 2002
  10. ^ Reyes et al., 2004
  11. ^ Bergsten, 2005
  12. ^ Flynn et al., 2003
  13. ^ Marivaux et al., 2002
  14. ^ Marivaux et al., 2004
  15. ^ McKenna and Bell, 1997
  • Bergsten, J. 2005. A review of long-branch attraction. Cladistics, 21:163-193.
  • Cao, Y., Adachi, J., Yano, T. and Hasegawa, M. 1994. Phylogenetic place of guinea pigs: No support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences. Molecular Biology and Evolution, 11: 593-604.
  • Carleton, M. D. and G. G. Musser. 2005. Order Rodentia. Pp745–752 in Mammal Species of the World A Taxonomic and Geographic Reference (D. E. Wilson and D. M. Reeder eds.). Baltimore, Johns Hopkins University Press.
  • D'Erchia, A., Gissi, C., Pesole, G., Saccone, C. and Arnason, U. 1996. The guinea-pig is not a rodent. Nature, 381 (6583): 597-600.
  • Flynn, J. J., Wyss, A. R., Croft, D. A., and Charrier, R. 2003. The Tinguiririca Fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal ‘Age’. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:229-259.
  • Graur, D., Hide, W. and Li, W. 1991. Is the guinea-pig a rodent? Nature, 351: 649-652.
  • Huchon, D. E. J. P. Douzery. 2001. From the Old World to the New World: A molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Molecular Phylogenetics and Evolution, 20:238-251.
  • Kuma, K. and Miyata, T. 1994. Mammalian phylogeny inferred from multiple protein data. Japanese Journal of Genetics, 69 (5): 555-66.
  • Landry, S. O. J. 1999. A proposal for a new classification and nomenclature for the glires. Mitt. Mus. Nat. Kd. Berl. Zool. Reihe, 75:283-316.
  • Lin, Y-H, et al. 2002. Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Molecular Biology and Evolution, 19: 2060-2070.
  • Marivaux, L., M. Vianey-Liaud, and J.-J. Jaeger. 2004. High-level phylogeny of early Tertiary rodents: dental evidence. Zoological Journal of the Linnean Society, 142:105-134.
  • Marivaux, L. J. L. Welcomme, M. Vianey-Liaud, and J.J. Jaeger. 2002. The role of Asia in the origin and diversification of hystricognathous rodents. Zoologica Scripta, 31:225-239.
  • McKenna, Malcolm C., and Bell, Susan K. 1997. Classification of Mammals Above the Species Level. Columbia University Press, New York, 631 pp. ISBN 0-231-11013-8
  • Reyes, A., Pesole, G. and Saccone, C. 2000. Long-branch attraction phenomenon and the impact of among-site rate variation on rodent phylogeny. Gene, 259 (1-2): 177-87.
  • Reyes, A., Gissi, C., Catzeflis, F., Nevo, E. Pesole, G. and Saccone, C. 2004. Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Molecular Biology and Evolution, 21 (2): 397-403.
  • Robinson-Rechavi, M., Ponger, L. and Mouchiroud, D. 2000. Nuclear gene LCAT supports rodent monophyly. Molecular Biology and Evolution, 17: 1410-1412.
  • Sullivan, J. and Swofford, D.L. 1997. Are guinea pigs rodents? the importance of adequate models in molecular phylogenetics. Journal of Mammalian Evolution, 4: 77-86.