Lys van integrale van logaritmiese funksies
Hier volg 'n lys van integrale (anti-afgeleide funksies) van logaritmiese funksies. Vir 'n volledige lys van integrale funksies, sien lys van integrale .
Nota: x > 0 word in hierdie artikel deurgaans veronderstel, en die konstante van integrasie word vir eenvoudigheid weggelaat.
Integrale wat slegs logaritmiese funksies bevat
∫
log
a
x
d
x
=
x
ln
x
−
x
ln
a
{\displaystyle \int \log _{a}x\,dx={\frac {x\ln x-x}{\ln a}
∫
ln
(
a
x
)
d
x
=
x
ln
(
a
x
)
−
x
{\displaystyle \int \ln(ax)\,dx=x\ln(ax)-x}
∫
ln
(
a
x
+
b
)
d
x
=
(
a
x
+
b
)
ln
(
a
x
+
b
)
−
a
x
a
{\displaystyle \int \ln(ax+b)\,dx={\frac {(ax+b)\ln(ax+b)-ax}{a}
∫
(
ln
x
)
2
d
x
=
x
(
ln
x
)
2
−
2
x
ln
x
+
2
x
{\displaystyle \int (\ln x)^{2}\,dx=x(\ln x)^{2}-2x\ln x+2x}
∫
(
ln
x
)
n
d
x
=
x
∑
k
=
0
n
(
−
1
)
n
−
k
n
!
k
!
(
ln
x
)
k
{\displaystyle \int (\ln x)^{n}\,dx=x\sum _{k=0}^{n}(-1)^{n-k}{\frac {n!}{k!}(\ln x)^{k}
∫
d
x
ln
x
=
ln
|
ln
x
|
+
ln
x
+
∑
k
=
2
∞
(
ln
x
)
k
k
⋅
k
!
{\displaystyle \int {\frac {dx}{\ln x}=\ln |\ln x|+\ln x+\sum _{k=2}^{\infty }{\frac {(\ln x)^{k}{k\cdot k!}
∫
d
x
ln
x
=
li
(
x
)
{\displaystyle \int {\frac {dx}{\ln x}=\operatorname {li} (x)}
, die logaritmiese integraal.
∫
d
x
(
ln
x
)
n
=
−
x
(
n
−
1
)
(
ln
x
)
n
−
1
+
1
n
−
1
∫
d
x
(
ln
x
)
n
−
1
(vir
n
≠
1
)
{\displaystyle \int {\frac {dx}{(\ln x)^{n}=-{\frac {x}{(n-1)(\ln x)^{n-1}+{\frac {1}{n-1}\int {\frac {dx}{(\ln x)^{n-1}\qquad {\mbox{(vir }n\neq 1{\mbox{)}
Integrale wat logaritmiese en magsfunksies bevat
∫
x
m
ln
x
d
x
=
x
m
+
1
(
ln
x
m
+
1
−
1
(
m
+
1
)
2
)
(vir
m
≠
−
1
)
{\displaystyle \int x^{m}\ln x\,dx=x^{m+1}\left({\frac {\ln x}{m+1}-{\frac {1}{(m+1)^{2}\right)\qquad {\mbox{(vir }m\neq -1{\mbox{)}
∫
x
m
(
ln
x
)
n
d
x
=
x
m
+
1
(
ln
x
)
n
m
+
1
−
n
m
+
1
∫
x
m
(
ln
x
)
n
−
1
d
x
(vir
m
≠
−
1
)
{\displaystyle \int x^{m}(\ln x)^{n}\,dx={\frac {x^{m+1}(\ln x)^{n}{m+1}-{\frac {n}{m+1}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(vir }m\neq -1{\mbox{)}
∫
(
ln
x
)
n
d
x
x
=
(
ln
x
)
n
+
1
n
+
1
(vir
n
≠
−
1
)
{\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x}={\frac {(\ln x)^{n+1}{n+1}\qquad {\mbox{(vir }n\neq -1{\mbox{)}
∫
ln
x
n
d
x
x
=
(
ln
x
n
)
2
2
n
(vir
n
≠
0
)
{\displaystyle \int {\frac {\ln {x^{n}\,dx}{x}={\frac {(\ln {x^{n})^{2}{2n}\qquad {\mbox{(vir }n\neq 0{\mbox{)}
∫
ln
x
d
x
x
m
=
−
ln
x
(
m
−
1
)
x
m
−
1
−
1
(
m
−
1
)
2
x
m
−
1
(vir
m
≠
1
)
{\displaystyle \int {\frac {\ln x\,dx}{x^{m}=-{\frac {\ln x}{(m-1)x^{m-1}-{\frac {1}{(m-1)^{2}x^{m-1}\qquad {\mbox{(vir }m\neq 1{\mbox{)}
∫
(
ln
x
)
n
d
x
x
m
=
−
(
ln
x
)
n
(
m
−
1
)
x
m
−
1
+
n
m
−
1
∫
(
ln
x
)
n
−
1
d
x
x
m
(vir
m
≠
1
)
{\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x^{m}=-{\frac {(\ln x)^{n}{(m-1)x^{m-1}+{\frac {n}{m-1}\int {\frac {(\ln x)^{n-1}dx}{x^{m}\qquad {\mbox{(vir }m\neq 1{\mbox{)}
∫
x
m
d
x
(
ln
x
)
n
=
−
x
m
+
1
(
n
−
1
)
(
ln
x
)
n
−
1
+
m
+
1
n
−
1
∫
x
m
d
x
(
ln
x
)
n
−
1
(vir
n
≠
1
)
{\displaystyle \int {\frac {x^{m}\,dx}{(\ln x)^{n}=-{\frac {x^{m+1}{(n-1)(\ln x)^{n-1}+{\frac {m+1}{n-1}\int {\frac {x^{m}dx}{(\ln x)^{n-1}\qquad {\mbox{(vir }n\neq 1{\mbox{)}
∫
d
x
x
ln
x
=
ln
|
ln
x
|
{\displaystyle \int {\frac {dx}{x\ln x}=\ln \left|\ln x\right|}
∫
d
x
x
ln
x
ln
ln
x
=
ln
|
ln
|
ln
x
|
|
{\displaystyle \int {\frac {dx}{x\ln x\ln \ln x}=\ln \left|\ln \left|\ln x\right|\right|}
, etc.
∫
d
x
x
ln
ln
x
=
li
(
ln
x
)
{\displaystyle \int {\frac {dx}{x\ln \ln x}=\operatorname {li} (\ln x)}
∫
d
x
x
n
ln
x
=
ln
|
ln
x
|
+
∑
k
=
1
∞
(
−
1
)
k
(
n
−
1
)
k
(
ln
x
)
k
k
⋅
k
!
{\displaystyle \int {\frac {dx}{x^{n}\ln x}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}{k\cdot k!}
∫
d
x
x
(
ln
x
)
n
=
−
1
(
n
−
1
)
(
ln
x
)
n
−
1
(vir
n
≠
1
)
{\displaystyle \int {\frac {dx}{x(\ln x)^{n}=-{\frac {1}{(n-1)(\ln x)^{n-1}\qquad {\mbox{(vir }n\neq 1{\mbox{)}
∫
ln
(
x
2
+
a
2
)
d
x
=
x
ln
(
x
2
+
a
2
)
−
2
x
+
2
a
tan
−
1
x
a
{\displaystyle \int \ln(x^{2}+a^{2})\,dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}
∫
x
x
2
+
a
2
ln
(
x
2
+
a
2
)
d
x
=
1
4
ln
2
(
x
2
+
a
2
)
{\displaystyle \int {\frac {x}{x^{2}+a^{2}\ln(x^{2}+a^{2})\,dx={\frac {1}{4}\ln ^{2}(x^{2}+a^{2})}
Integrale wat logaritmiese en trigonometriese funksies bevat
∫
sin
(
ln
x
)
d
x
=
x
2
(
sin
(
ln
x
)
−
cos
(
ln
x
)
)
{\displaystyle \int \sin(\ln x)\,dx={\frac {x}{2}(\sin(\ln x)-\cos(\ln x))}
∫
cos
(
ln
x
)
d
x
=
x
2
(
sin
(
ln
x
)
+
cos
(
ln
x
)
)
{\displaystyle \int \cos(\ln x)\,dx={\frac {x}{2}(\sin(\ln x)+\cos(\ln x))}
Integrale wat logaritmiese en eksponensiële funksies bevat
∫
e
x
(
x
ln
x
−
x
−
1
x
)
d
x
=
e
x
(
x
ln
x
−
x
−
ln
x
)
{\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}\right)\,dx=e^{x}(x\ln x-x-\ln x)}
∫
1
e
x
(
1
x
−
ln
x
)
d
x
=
ln
x
e
x
{\displaystyle \int {\frac {1}{e^{x}\left({\frac {1}{x}-\ln x\right)\,dx={\frac {\ln x}{e^{x}
∫
e
x
(
1
ln
x
−
1
x
(
ln
x
)
2
)
d
x
=
e
x
ln
x
{\displaystyle \int e^{x}\left({\frac {1}{\ln x}-{\frac {1}{x(\ln x)^{2}\right)\,dx={\frac {e^{x}{\ln x}
n opeenvolgende integrasies
Vir
n
{\displaystyle n}
opeenvolgende integrasies, veralgemeen die formule
∫
ln
x
d
x
=
x
(
ln
x
−
1
)
+
C
0
{\displaystyle \int \ln x\,dx=x(\ln x-1)+C_{0}
na
∫
⋯
∫
ln
x
d
x
⋯
d
x
=
x
n
n
!
(
ln
x
−
∑
k
=
1
n
1
k
)
+
∑
k
=
0
n
−
1
C
k
x
k
k
!
{\displaystyle \int \dotsi \int \ln x\,dx\dotsm dx={\frac {x^{n}{n!}\left(\ln \,x-\sum _{k=1}^{n}{\frac {1}{k}\right)+\sum _{k=0}^{n-1}C_{k}{\frac {x^{k}{k!}
Verwysings
Milton Abramowitz en Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964. 'n Paar integrale word op bladsy 69 gelys.
Lyste van integrale
Rasionale funksies
Irrasionale funksies
Trigonometriese funksies
Inverse trigonometriese funksies
Hiperboliese funksies
Inverse hiperboliese funksies
Eksponensiële funksies
Logaritmiese funksies
Gaussiese funksies
The article is a derivative under the Creative Commons Attribution-ShareAlike License .
A link to the original article can be found here and attribution parties here
By using this site, you agree to the Terms of Use . Gpedia ® is a registered trademark of the Cyberajah Pty Ltd