CD79 serves to be a pan-B cell marker for the detection of B-cell neoplasms. However, tumor cells in some cases of T-lymphoblastic leukemia/lymphoma and AML has shown to potentially react positively with CD79 monoclonal antibodies.[4] In addition, both CD79 chains contain an immunoreceptor tyrosine-based activation motif (ITAM), which some scientists have found to propagate downstream signaling in B-cells. CD79 has been tested as a B-cell target in MRL/lpr mice, a mouse model for systemic lupus erythematosus (SLE).[5] CD79, expressed by B-cell and plasma cell precursors is a candidate that induces apoptosis as well as inhibition of B-cell receptor (BCR) activation and possibly depletion of ectopic germinal centers (GC).[5] However, research on CD79 still remains very open.
CD79 and BCR Signaling
Scientists identified mutations in the BCR coreceptor CD79A/B that lead to chronic activation of BCR signaling. Somatic mutations affecting the ITAM signaling modules of CD79B and CD79A were detected frequently in biopsy samples.[6] Moreover, some researchers believe that CD79 may emerge as an alternative target for the treatment of B-cell-dependent autoimmunity.[7] Hardy et al. found that upon an Ag-induced BCR aggregation, CD79 is phosphorylated and initiates a cascade of downstream signaling events. Hardy et al. further characterized an alternate mode of BCR signaling that is induced by chronic AgR stimulation and maintains a state of B cell unresponsiveness termed "anergy".[8] Other studies that focused on the deficiencies observed in neonatal antibody production can be due to various intrinsic features such as B-cell immaturity, poor B-cell repertoire or reduced strength of BCR signaling. Activation of the BCR with T-cell-dependent (TD) or TI antigens induces cross-linking of surface Ig molecules and binding to the transmembrane protein CD79.
^Müller B, Cooper L, Terhorst C (January 1995). "Interplay between the human TCR/CD3 epsilon and the B-cell antigen receptor associated Ig-beta (B29)". Immunology Letters. 44 (2–3): 97–103. doi:10.1016/0165-2478(94)00199-2. PMID7541024.