Indium(III) hydroxide
Names | |
---|---|
IUPAC name
Indium(III) hydroxide
| |
Other names
Indium hydroxide, indium trihydroxide
| |
Identifiers | |
3D model (JSmol)
|
|
ECHA InfoCard | 100.039.937 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
In(OH)3 | |
Molar mass | 165.8404 g/mol |
Appearance | White solid |
Density | 4.38 g/cm3 |
Melting point | 150 °C (302 °F; 423 K) (decomposes) |
insoluble | |
Refractive index (nD)
|
1.725 |
Structure | |
cubic | |
Im3 | |
octahedral | |
Hazards | |
NFPA 704 (fire diamond) | |
Related compounds | |
Related compounds
|
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Indium(III) hydroxide is the chemical compound with the formula In(OH)3. Its prime use is as a precursor to indium(III) oxide, In2O3.[1] It is sometimes found as the rare mineral dzhalindite.
Structure
Indium(III) hydroxide has a cubic structure, space group Im3, a distorted ReO3 structure.[2][3]
Preparation and reactions
Neutralizing a solution containing an In3+ salt such as indium nitrate (In(NO3)3) or a solution of indium trichloride (InCl3) gives a white precipitate that on aging forms indium(III) hydroxide.[4][5] A thermal decomposition of freshly prepared In(OH)3 shows the first step is the conversion of In(OH)3·xH2O to cubic indium(III) hydroxide.[4] The precipitation of indium hydroxide was a step in the separation of indium from zincblende ore by Reich and Richter, the discoverers of indium.[6]
Indium(III) hydroxide is amphoteric, like gallium(III) hydroxide (Ga(OH)3) and aluminium hydroxide (Al(OH)3), but is much less acidic than gallium hydroxide (Ga(OH)3),[5] having a lower solubility in alkaline solutions than in acid solutions.[7] It is for all intents and purposes a basic hydroxide.[8]
Dissolving indium(III) hydroxide in strong alkali gives solutions that probably contain either four coordinate [In(OH)4]− or [In(OH)4(H2O)]−.[8]
Reaction with acetic acid or carboxylic acids is likely to give the basic acetate or carboxylate salt, e.g. (CH3COO)2In(OH).[7]
At 10 MPa pressure and 250-400 °C, indium(III) hydroxide converts to indium oxide hydroxide (InO(OH)), which has a distorted rutile structure.[5]
Rapid decompression of samples of indium(III) hydroxide compressed at 34 GPa causes decomposition, yielding some indium metal.[9]
Laser ablation of indium(III) hydroxide gives indium(I) hydroxide (InOH), a bent molecule with an In-O-H angle of around 132° and an In-O bond length of 201.7 pm.[10]
References
- ^ Simon Aldridge, Anthony J. Downs (2011). The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities. Wiley. ISBN 978-0-470-68191-6.
- ^ A Norlund Christensen, N.C. Broch (1967). "Hydrothermal Investigation of the systems In2O3-H2O-Na2O and In2O3-D2O-Na2O. The crystal structure of rhombohedral In2O3 and In(OH)3". Acta Chemica Scandinavica. 21: 1046–1056. doi:10.3891/acta.chem.scand.21-1046.
- ^ Wells A.F. (1984). Structural Inorganic Chemistry (5th ed.). Oxford Science Publications. ISBN 0-19-855370-6.
- ^ a b Sato, T. (2005). "Preparation and thermal decomposition of indium hydroxide". Journal of Thermal Analysis and Calorimetry. 82 (3): 775–782. doi:10.1007/s10973-005-0963-4. ISSN 1388-6150. S2CID 195329927.
- ^ a b c Egon Wiberg, Arnold Frederick Holleman (2001). Inorganic Chemistry. Elsevier. ISBN 0123526515.
- ^ Advanced Inorganic Chemistry. Vol. I (31st ed.). Krishna Prakashan Media. 2008. ISBN 9788187224037.
- ^ a b George K. Schweitzer, Lester L. Pesterfield (2009). The Aqueous Chemistry of the Elements. Oxford University Press. ISBN 978-0195393354.
- ^ a b Anthony John Downs (1993). Chemistry of aluminium, gallium, indium, and thallium. Springer. ISBN 0-7514-0103-X.
- ^ Gurlo, Aleksander; Dzivenko, Dmytro; Andrade, Miria; Riedel, Ralf; Lauterbach, Stefan; Kleebe, Hans-Joachim (2010). "Pressure-Induced Decomposition of Indium Hydroxide". Journal of the American Chemical Society. 132 (36): 12674–12678. doi:10.1021/ja104278p. ISSN 0002-7863. PMID 20731389.
- ^ Lakin, Nicholas M.; Varberg, Thomas D.; Brown, John M. (1997). "The Detection of Lines in the Microwave Spectrum of Indium Hydroxide, InOH, and Its Isotopomers". Journal of Molecular Spectroscopy. 183 (1): 34–41. Bibcode:1997JMoSp.183...34L. doi:10.1006/jmsp.1996.7237. ISSN 0022-2852.