Maxwellin–Boltzmannin jakauma

Maxwell–Boltzmann
Tiheysfunktio
Kertymäfunktio
Parametrit
Määrittelyjoukko
Tiheysfunktio
Kertymäfunktio missä erf on virhefunktio
Odotusarvo
Moodi
Varianssi
Vinous
Huipukkuus
Entropia

Maxwellin–Boltzmannin jakauma on todennäköisyysjakauma, jota käytetään kuvaamaan fysiikan ja kemian tilastollisia ilmiöitä. Esimerkiksi ilman molekyylien nopeusjakauma noudattaa Maxwellin–Boltzmannin jakaumaa. Jakauma voidaan johtaa tilastollisesta mekaniikasta ja sen avulla voidaan selittää kaasujen ominaisuuksia kuten paine.

Yleinen Maxwellin jakauma

Maxwellin jakauma (tai Maxwellin–Boltzmannin jakauma) on muotoa

missä

  • π on vakio pii
  • on Neperin luku
  • on vakio, joka yli 0
  • on esimerkiksi hiukkasten nopeus

Kumulatiivinen Maxwellin jakauma saadaan

missä on virhefunktio.

Maxwellin–Boltzmannin nopeusjakauma kaasulle

Maxwell-Boltzmannin jakauma

Kaasun molekyylien liike noudattaa Maxwellin–Boltzmannin nopeusjakaumaa

eli

tai

missä

  • on nopeudella liikkuvien kaasumolekyylien osuus, esimerkiksi puolet on 0,5
  • on keskimääräinen molekyylimassa kilogrammoina
  • on Boltzmannin vakio 1,3806503·10-23 JK-1
  • on lämpötila Kelvineinä
  • on kaasumolekyylin vauhti
  • on yhden kaasumoolin massa, mikä on molekyylimassa kertaa Avogadron vakio
  • on yleinen kaasuvakio eli Boltzmannin vakio kerrottuna Avogadron vakiolla

Tyypillisiä kaasuosasten nopeuksia

Yleisin kaasuosasen nopeus lasketaan kaavasta

missä

  • Boltzmannin vakio
  • lämpötila
  • molekyylimassa
  • yleinen kaasuvakio eli Boltzmannin vakio kerrottuna Avogadron vakiolla
  • yhden kaasumoolin massa, mikä on molekyylimassa kertaa Avogadron vakio

Se on pienempi kuin kaasuosasten keskinopeus

Kvanttiteoreettiset jakaumat

Kvanttiteoria on osoittanut, ettei Maxwellin–Boltzmannin jakauma sellaisenaan päde millekään alkeishiukkaselle. Sen sijaan niihin on sovellettava joko Bosen–Einsteinin tai Fermin–Diracin statistista jakaumalakia riippuen siitä, ovatko hiukkaset bosoneja vai fermioneja. Silloin kun hiukkasilla on mahdollisia energiatiloja niin paljon, ettei kvantittumista tarvitse ottaa huomioon, energiatilojen miehitys vastaa Boltzmannin jakaumaa. Nopeusjakauma, eli Maxwellin-Boltzmannin jakauma, puolestaan voidaan johtaa energiajakaumasta.

Katso myös

Lähteet

  • Paakkari, T.: Termofysiikka. (s. 107–113) Limes ry, 1997.

Aiheesta muualla