De Maxwell-Boltzmann-verdeling of snelheidsverdelingswet van Maxwell-Boltzmann geeft de verdeling van de snelheden van gasmoleculen in een ideaal gas weer, wanneer de moleculen als puntvormig kunnen worden opgevat en zij volkomen elastisch botsen, zodat impuls en energie behouden blijven. Er vinden tevens geen simultane botsingen plaats van 3 of meer moleculen. De Maxwell-Boltzmann-verdeling vervult een centrale rol in toepassingen van de kinetische gastheorie.
De dichtheid van de snelheidsverdeling van de deeltjes wordt gegeven door:
Daarin is
de massa van een deeltje van het gas (in SI-eenheden in kg)
In de stationaire toestand zijn de gasdeeltjes gelijkmatig verdeeld over het volume. De energie van een deeltje is zijn kinetische energie en omdat de totale energie van het gas vastligt, is de snelheid van een deeltje begrensd. Alle mogelijke snelheden worden opgedeeld in een eindig aantal () klassen, waarbinnen de snelheid weinig varieert.
Voorwaarden
Elk van de deeltjes valt wat zijn snelheid betreft binnen een van de klassen. De aantallen in de klassen zijn . Er geldt dus:
Ook moet het totaal van de energie van de deeltjes gelijk zijn aan de totale energie van het gas, dus:
Waarschijnlijkheidsdichtheden van realisaties
De verdeling van de deeltjes over de snelheidsklassen kan op meer manieren gerealiseerd worden. Zijn alle deeltjes in één klasse dan is er maar één manier, maar zijn ze op een na alle in één klasse dan zijn er al mogelijke realisaties. Algemeen is het aantal realisaties bij de verdeling van deeltjes over de klassen:
Hoe meer realisaties een verdeling heeft, hoe waarschijnlijker het is dat het gas zich in een realisatie van die verdeling bevindt, uitgaande van het belangrijkste postulaat van de statistische mechanica, namelijk dat alle microtoestandena priori gelijke waarschijnlijkheden hebben. De meest waarschijnlijke verdeling is dus de verdeling met het grootste aantal realisaties, zij het dat aan de genoemde voorwaarden moet zijn voldaan.
Optimalisatie
Onder deze voorwaarden wordt de verdeling bepaald waarvoor het aantal realisaties maximaal is. Om gemakkelijker te rekenen neemt men, in plaats van het aantal realisaties zelf, de logaritme daarvan. Dit is toegestaan omdat de logaritme monotoon stijgend is. Met de multiplicatorenmethode van Lagrange wordt de vergelijking: