Popis integrala hiperbolnih funkcija
Slijedi popis integrala (antiderivacija funkcija) hiperbolnih funkcija. Za potpun popis integrala funkcija, pogledati tablica integrala i popis integrala.
Za konstantu c se pretpostavlja da je različita od nule.
![{\displaystyle \int \operatorname {sh} cx\,dx={\frac {1}{c}\operatorname {ch} cx+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6feb9546cf64a0894781d93e01fdc0380b45ff7)
![{\displaystyle \int \operatorname {ch} cx\,dx={\frac {1}{c}\operatorname {sh} cx+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51ee9a4a7794ab1a9a33ccdd50957bd8dc004404)
![{\displaystyle \int \operatorname {sh} ^{2}cx\,dx={\frac {1}{4c}\operatorname {sh} 2cx-{\frac {x}{2}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46c7f83b94ec8833739f2acc6dba5d37893036fa)
![{\displaystyle \int \operatorname {ch} ^{2}cx\,dx={\frac {1}{4c}\operatorname {sh} 2cx+{\frac {x}{2}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4251ca6b0149d318e4bfa9bf74bf7aa80b95e37b)
![{\displaystyle \int \operatorname {sh} ^{n}cx\,dx={\frac {1}{cn}\operatorname {sh} ^{n-1}cx\operatorname {ch} cx-{\frac {n-1}{n}\int \operatorname {sh} ^{n-2}cx\,dx+C\qquad {\mbox{(za }n>0{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9460296ad49b4795185a1660794e418b05776e96)
- također:
![{\displaystyle \int \operatorname {sh} ^{n}cx\,dx={\frac {1}{c(n+1)}\operatorname {sh} ^{n+1}cx\operatorname {ch} cx-{\frac {n+2}{n+1}\int \operatorname {sh} ^{n+2}cx\,dx+C\qquad {\mbox{(za }n<0{\mbox{, }n\neq -1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c873ec3bb9a4d7221c4f47beb06737702df9e669)
![{\displaystyle \int \operatorname {ch} ^{n}cx\,dx={\frac {1}{cn}\operatorname {sh} cx\operatorname {ch} ^{n-1}cx+{\frac {n-1}{n}\int \operatorname {ch} ^{n-2}cx\,dx+C\qquad {\mbox{(za }n>0{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2e1c7129203c18b6182fc9e7a8c4c562ec1683ff)
- također:
![{\displaystyle \int \operatorname {ch} ^{n}cx\,dx=-{\frac {1}{c(n+1)}\operatorname {sh} cx\operatorname {ch} ^{n+1}cx-{\frac {n+2}{n+1}\int \operatorname {ch} ^{n+2}cx\,dx+C\qquad {\mbox{(za }n<0{\mbox{, }n\neq -1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f1532f542a8aa439b6ddc9c3c0f79c3693e0573)
![{\displaystyle \int {\frac {dx}{\operatorname {sh} cx}={\frac {1}{c}\ln \left|\operatorname {th} {\frac {cx}{2}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4d1abe195b48e02676b21b16b07c1d9b720f9c9c)
- također:
![{\displaystyle \int {\frac {dx}{\operatorname {sh} cx}={\frac {1}{c}\ln \left|{\frac {\operatorname {ch} cx-1}{\operatorname {sh} cx}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/66ef12cd3cbcb306bef763d9e72034ebaab2e874)
- također:
![{\displaystyle \int {\frac {dx}{\operatorname {sh} cx}={\frac {1}{c}\ln \left|{\frac {\operatorname {sh} cx}{\operatorname {ch} cx+1}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3eac6dff15bb058e7e9f4e6835e8eaebe7930b98)
- također:
![{\displaystyle \int {\frac {dx}{\operatorname {sh} cx}={\frac {1}{c}\ln \left|{\frac {\operatorname {ch} cx-1}{\operatorname {ch} cx+1}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fabad4004c363eae1ac0644767ec632fe8f73ea0)
![{\displaystyle \int {\frac {dx}{\operatorname {ch} cx}={\frac {2}{c}\operatorname {arctg} e^{cx}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/15cab7bc7c82b1d74ebd65f1e980f8a1f76fdc6e)
![{\displaystyle \int {\frac {dx}{\operatorname {sh} ^{n}cx}={\frac {\operatorname {ch} cx}{c(n-1)\operatorname {sh} ^{n-1}cx}-{\frac {n-2}{n-1}\int {\frac {dx}{\operatorname {sh} ^{n-2}cx}+C\qquad {\mbox{(za }n\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/389871bacdd0c67a8d4d38e8f419634371246e01)
![{\displaystyle \int {\frac {dx}{\operatorname {ch} ^{n}cx}={\frac {\operatorname {sh} cx}{c(n-1)\operatorname {ch} ^{n-1}cx}+{\frac {n-2}{n-1}\int {\frac {dx}{\operatorname {ch} ^{n-2}cx}+C\qquad {\mbox{(za }n\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cd656222a04ceb099fad548d1bf7eabf988aab8)
![{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}dx={\frac {\operatorname {ch} ^{n-1}cx}{c(n-m)\operatorname {sh} ^{m-1}cx}+{\frac {n-1}{n-m}\int {\frac {\operatorname {ch} ^{n-2}cx}{\operatorname {sh} ^{m}cx}dx+C\qquad {\mbox{(za }m\neq n{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24413b42970274312d94b00012b116db148453b0)
- također:
![{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}dx=-{\frac {\operatorname {ch} ^{n+1}cx}{c(m-1)\operatorname {sh} ^{m-1}cx}+{\frac {n-m+2}{m-1}\int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m-2}cx}dx+C\qquad {\mbox{(za }m\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7bffb47aa26c4177c97435c289aa89f1961b072e)
- također:
![{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}dx=-{\frac {\operatorname {ch} ^{n-1}cx}{c(m-1)\operatorname {sh} ^{m-1}cx}+{\frac {n-1}{m-1}\int {\frac {\operatorname {ch} ^{n-2}cx}{\operatorname {sh} ^{m-2}cx}dx+C\qquad {\mbox{(za }m\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0c7c1d844ccd84bc724bb3032437da33782fe8c)
![{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}dx={\frac {\operatorname {sh} ^{m-1}cx}{c(m-n)\operatorname {ch} ^{n-1}cx}+{\frac {m-1}{m-n}\int {\frac {\operatorname {sh} ^{m-2}cx}{\operatorname {ch} ^{n}cx}dx+C\qquad {\mbox{(za }m\neq n{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e88230924572103c3b158a645c8ae66258eb3997)
- također:
![{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}dx={\frac {\operatorname {sh} ^{m+1}cx}{c(n-1)\operatorname {ch} ^{n-1}cx}+{\frac {m-n+2}{n-1}\int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n-2}cx}dx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d5f77f4a4b89c41f205e4bb6660a33f49758f928)
- također:
![{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}dx=-{\frac {\operatorname {sh} ^{m-1}cx}{c(n-1)\operatorname {ch} ^{n-1}cx}+{\frac {m-1}{n-1}\int {\frac {\operatorname {sh} ^{m-2}cx}{\operatorname {ch} ^{n-2}cx}dx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03d343366c633be351062fd1c80947f3a43c9f9c)
![{\displaystyle \int x\operatorname {sh} cx\,dx={\frac {1}{c}x\operatorname {ch} cx-{\frac {1}{c^{2}\operatorname {sh} cx+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0d96365a6d1e93cc1033f88681be7df16e815849)
![{\displaystyle \int x\operatorname {ch} cx\,dx={\frac {1}{c}x\operatorname {sh} cx-{\frac {1}{c^{2}\operatorname {ch} cx+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d4cd4d282046ba9cf880d3fc98207e5beda34d87)
![{\displaystyle \int \operatorname {th} cx\,dx={\frac {1}{c}\ln |\operatorname {ch} cx|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f2988877e72ea1fe2c5f8748ec4fb825e1c10e28)
![{\displaystyle \int \operatorname {cth} cx\,dx={\frac {1}{c}\ln |\operatorname {sh} cx|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a2c4abf953f07ec5fd59539b95563ad645b2de95)
![{\displaystyle \int \operatorname {th} ^{n}cx\,dx=-{\frac {1}{c(n-1)}\operatorname {th} ^{n-1}cx+\int \operatorname {th} ^{n-2}cx\,dx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6257538042b6e599495bc1724a1e0966675446c9)
![{\displaystyle \int \operatorname {cth} ^{n}cx\,dx=-{\frac {1}{c(n-1)}\operatorname {cth} ^{n-1}cx+\int \operatorname {cth} ^{n-2}cx\,dx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c4eee5bab1e8687e5adfb5fb30854f3dd4085801)
![{\displaystyle \int \operatorname {sh} bx\operatorname {sh} cx\,dx={\frac {1}{b^{2}-c^{2}(b\operatorname {sh} cx\operatorname {ch} bx-c\operatorname {ch} cx\operatorname {sh} bx)+C\qquad {\mbox{(za }b^{2}\neq c^{2}{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/516036475b52795c30ca91656b3a0e469558499a)
![{\displaystyle \int \operatorname {ch} bx\operatorname {ch} cx\,dx={\frac {1}{b^{2}-c^{2}(b\operatorname {sh} bx\operatorname {ch} cx-c\operatorname {sh} cx\operatorname {ch} bx)+C\qquad {\mbox{(za }b^{2}\neq c^{2}{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e7499048372d48397b31b7c4af9eb47e1772ad9e)
![{\displaystyle \int \operatorname {ch} bx\operatorname {sh} cx\,dx={\frac {1}{b^{2}-c^{2}(b\operatorname {sh} bx\operatorname {sh} cx-c\operatorname {ch} bx\operatorname {ch} cx)+C\qquad {\mbox{(za }b^{2}\neq c^{2}{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e6e37db5b757fb5ee044c5182ca18eefe81d349)
![{\displaystyle \int \operatorname {sh} (ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}\operatorname {ch} (ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}\operatorname {sh} (ax+b)\cos(cx+d)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c4a06704949ffc3a775a98b844225babcd71e34)
![{\displaystyle \int \operatorname {sh} (ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}\operatorname {ch} (ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}\operatorname {sh} (ax+b)\sin(cx+d)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a13456dd256f6c30ae1e625a7d2a07b98d0836c)
![{\displaystyle \int \operatorname {ch} (ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}\operatorname {sh} (ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}\operatorname {ch} (ax+b)\cos(cx+d)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5c2fefa8c948d70912fd5dad4a1eb686412d54e)
![{\displaystyle \int \operatorname {ch} (ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}\operatorname {sh} (ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}\operatorname {ch} (ax+b)\sin(cx+d)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3849dc7936382c69d2b4c1bb6be14a91d67c40bf)