Popis integrala trigonometrijskih funkcija
Slijedi popis integrala (antiderivacija funkcija) trigonometrijskih funkcija. Za potpun popis integrala funkcija, pogledati tablica integrala i popis integrala. Vidjeti također: trigonometrijski integral.
Za konstantu c se pretpostavlja da je različita od nule.
Integrali trigonometrijskih funkcija koje sadrže samo sin
Pri čemu je c konstanta:
![{\displaystyle \int \sin cx\;dx=-{\frac {1}{c}\cos cx\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4e03c0c4acb0296ddababdafa5cfa66739bdc16b)
![{\displaystyle \int \ |sinx|\,dx=-\cos x\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/36247a7cfe2c6c6ec0c42c23a0d3ca48cd95a61a)
![{\displaystyle \int \sin ^{n}{cx}\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}+{\frac {n-1}{n}\int \sin ^{n-2}cx\;dx+C\qquad {\mbox{(za }n>0{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ed3ab56463a77a53801b69e3e18ccd192ae216b)
![{\displaystyle \int \sin ^{2}{cx}\;dx={\frac {x}{2}-{\frac {1}{4c}\sin 2cx\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c1b53c5663cb2c978327b4d42b0b653a8f06f29c)
![{\displaystyle \int {\sqrt {1-\sin {x}\,dx=\int {\sqrt {\operatorname {cvs} {x}\,dx=2{\frac {\cos {\frac {x}{2}+\sin {\frac {x}{2}{\cos {\frac {x}{2}-\sin {\frac {x}{2}{\sqrt {\operatorname {cvs} {x}=2{\sqrt {1+\sin {x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4dcfc2cefec7bcca2f152cebfab5a41768614631)
gdje je cvs{x} funkcija koversinus.
![{\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}-{\frac {x\cos cx}{c}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a1390f712a2ede0fcaa690ed75a8896c639db8e)
![{\displaystyle \int x^{n}\sin cx\;dx=-{\frac {x^{n}{c}\cos cx+{\frac {n}{c}\int x^{n-1}\cos cx\;dx+C\qquad {\mbox{(za }n>0{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3060bcd87292a607271bd2cea3ee5f4fd9484d9c)
![{\displaystyle \int _{\frac {-a}{2}^{\frac {a}{2}x^{2}\sin ^{2}{\frac {n\pi x}{a}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}\qquad {\mbox{(za }n=2,4,6...{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9336fb174dee3b1bd0bee1ba2c015f851d299e9)
![{\displaystyle \int {\frac {\sin cx}{x}dx=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}{(2i+1)\cdot (2i+1)!}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d030ee7bb32d16a6894767fee5b68f7fb42a0fd3)
![{\displaystyle \int {\frac {\sin cx}{x^{n}dx=-{\frac {\sin cx}{(n-1)x^{n-1}+{\frac {c}{n-1}\int {\frac {\cos cx}{x^{n-1}dx\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c9e3d698d53840a23b8c62b294c301eee14de288)
![{\displaystyle \int {\frac {dx}{\sin cx}={\frac {1}{c}\ln \left|\operatorname {tg} {\frac {cx}{2}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d0af600d6a6512ee5952a833f4497735723708b1)
![{\displaystyle \int {\frac {dx}{\sin ^{n}cx}={\frac {\cos cx}{c(1-n)\sin ^{n-1}cx}+{\frac {n-2}{n-1}\int {\frac {dx}{\sin ^{n-2}cx}+C\qquad {\mbox{(za }n>1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3fcc17c2836e93fc71fccfabc7cb343c2cbd80be)
![{\displaystyle \int {\frac {dx}{1\pm \sin cx}={\frac {1}{c}\operatorname {tg} \left({\frac {cx}{2}\mp {\frac {\pi }{4}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ba8b09e106db977b1da4e8f399499140e7a47e91)
![{\displaystyle \int {\frac {x\;dx}{1+\sin cx}={\frac {x}{c}\operatorname {tg} \left({\frac {cx}{2}-{\frac {\pi }{4}\right)+{\frac {2}{c^{2}\ln \left|\cos \left({\frac {cx}{2}-{\frac {\pi }{4}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/412f1bc4225cac026458604ed33ad7b028082fe7)
![{\displaystyle \int {\frac {x\;dx}{1-\sin cx}={\frac {x}{c}\operatorname {ctg} \left({\frac {\pi }{4}-{\frac {cx}{2}\right)+{\frac {2}{c^{2}\ln \left|\sin \left({\frac {\pi }{4}-{\frac {cx}{2}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1618b04c343473b6021321f61da487a8504759ed)
![{\displaystyle \int {\frac {\sin cx\;dx}{1\pm \sin cx}=\pm x+{\frac {1}{c}\operatorname {tg} \left({\frac {\pi }{4}\mp {\frac {cx}{2}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1fbb25eebca138dabe1daef77e7bdc5376a9bb43)
![{\displaystyle \int \sin c_{1}x\sin c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}+C\qquad {\mbox{(za }|c_{1}|\neq |c_{2}|{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/41b0f9bf31cb61ac4f4052eb73d55ec22f38bb21)
Integrali trigonometrijskih funkcija koje sadrže samo cos
![{\displaystyle \int \cos cx\;dx={\frac {1}{c}\sin cx\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/de42312e1c20b09e04735117b841a526650bbed2)
![{\displaystyle \int \cos ^{n}cx\;dx={\frac {\cos ^{n-1}cx\sin cx}{nc}+{\frac {n-1}{n}\int \cos ^{n-2}cx\;dx+C\qquad {\mbox{(za }n>0{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07a092db5066fd4851fcdf2323989cff86c74143)
![{\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}+{\frac {x\sin cx}{c}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92957fc4dd7f8b12093bf08558a6e7762f82a99b)
![{\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}-{\frac {n}{c}\int x^{n-1}\sin cx\;dx\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf873e08f1e119dbe2d12fe56ecaaa43cbaf9a46)
![{\displaystyle \int _{\frac {-a}{2}^{\frac {a}{2}x^{2}\cos ^{2}{\frac {n\pi x}{a}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}\qquad {\mbox{(za }n=1,3,5...{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57450e2e58f62f6c9d6b3a545f3a852d52ce833a)
![{\displaystyle \int {\frac {\cos cx}{x}dx=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}{2i\cdot (2i)!}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d8047c2450a5dc4fb745dc49d3db18b3d4334c6)
![{\displaystyle \int {\frac {\cos cx}{x^{n}dx=-{\frac {\cos cx}{(n-1)x^{n-1}-{\frac {c}{n-1}\int {\frac {\sin cx}{x^{n-1}dx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b1975f0f3f740af2ef23328ed9771adf3ad27baf)
![{\displaystyle \int {\frac {dx}{\cos cx}={\frac {1}{c}\ln \left|\operatorname {tg} \left({\frac {cx}{2}+{\frac {\pi }{4}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/41f958c3ea6971697e0d37c458b4007cb4cc5f3f)
![{\displaystyle \int {\frac {dx}{\cos ^{n}cx}={\frac {\sin cx}{c(n-1)cos^{n-1}cx}+{\frac {n-2}{n-1}\int {\frac {dx}{\cos ^{n-2}cx}+C\qquad {\mbox{(za }n>1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/87b33dc538074b7b4cf816aeae49a981f099e01b)
![{\displaystyle \int {\frac {dx}{1+\cos cx}={\frac {1}{c}\operatorname {tg} {\frac {cx}{2}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c961c409f18821ba5878fc5b1d3899873179018c)
![{\displaystyle \int {\frac {dx}{1-\cos cx}=-{\frac {1}{c}\operatorname {ctg} {\frac {cx}{2}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ab8b012bfb5752a628fcbaba43b601156f174b)
![{\displaystyle \int {\frac {x\;dx}{1+\cos cx}={\frac {x}{c}\operatorname {tg} {\frac {cx}{2}+{\frac {2}{c^{2}\ln \left|\cos {\frac {cx}{2}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7d3dc272b24ec00d92918dc0601c208764c1ce9)
![{\displaystyle \int {\frac {x\;dx}{1-\cos cx}=-{\frac {x}{c}\operatorname {ctg} {\frac {cx}{2}+{\frac {2}{c^{2}\ln \left|\sin {\frac {cx}{2}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8501b1ae96330e07b5853690f9e28fe4b0268f2)
![{\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}=x-{\frac {1}{c}\operatorname {tg} {\frac {cx}{2}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/438b64661e4ed6850c70898b44e0b867cf3499d0)
![{\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}=-x-{\frac {1}{c}\operatorname {ctg} {\frac {cx}{2}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ab4e10132618f42755ac2de3842334c7472fef81)
![{\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}+C\qquad {\mbox{(za }|c_{1}|\neq |c_{2}|{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/82b530ef693c3e0b55e3c913b4be4fbdbd927caa)
Integrali trigonometrijskih funkcija koje sadrže samo tg
![{\displaystyle \int \operatorname {tg} cx\;dx=-{\frac {1}{c}\ln |\cos cx|\,\!={\frac {1}{c}\ln |\sec cx|\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/701e6c558c78bdac8f96805721238a17ccbc492e)
![{\displaystyle \int {\frac {dx}{\operatorname {tg} cx}={\frac {1}{c}\ln |\sin cx|\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01c45d6fb92914d1861ea6ea5e6a5f2e420b6c9f)
![{\displaystyle \int \operatorname {tg} ^{n}cx\;dx={\frac {1}{c(n-1)}\operatorname {tg} ^{n-1}cx-\int \operatorname {tg} ^{n-2}cx\;dx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/381359c7a92fc047ad00bb4ac514f1ee3e6c7b04)
![{\displaystyle \int {\frac {dx}{\operatorname {tg} cx+1}={\frac {x}{2}+{\frac {1}{2c}\ln |\sin cx+\cos cx|\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a104c47c60c9fc2f9cc1ecd75e0e043ec9235abf)
![{\displaystyle \int {\frac {dx}{\operatorname {tg} cx-1}=-{\frac {x}{2}+{\frac {1}{2c}\ln |\sin cx-\cos cx|\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/006e8fce4010ddea149c98d652f32e47c83532b5)
![{\displaystyle \int {\frac {\operatorname {tg} cx\;dx}{\operatorname {tg} cx+1}={\frac {x}{2}-{\frac {1}{2c}\ln |\sin cx+\cos cx|\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e77920c766db7c1a1512463cb2a7740f73399691)
![{\displaystyle \int {\frac {\operatorname {tg} cx\;dx}{\operatorname {tg} cx-1}={\frac {x}{2}+{\frac {1}{2c}\ln |\sin cx-\cos cx|\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d74b068227e2da5c8c6c6fe081ddde9310b7360)
Integrali trigonometrijskih funkcija koje sadrže samo sec
![{\displaystyle \ \sec {cx}\,dx={\frac {1}{c}\ln {\left|\sec {cx}+\operatorname {tg} {cx}\right|}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e98d309447337b186b5a68661dbe56f742689055)
![{\displaystyle \ \sec ^{n}{cx}\,dx={\frac {\sec ^{n-1}{cx}\sin {cx}{c(n-1)}\,+\,{\frac {n-2}{n-1}\ \sec ^{n-2}{cx}\,dx+C\qquad {\mbox{ (za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b378d432a2d284e093aa7528186042652ca9040d)
![{\displaystyle \ {\frac {dx}{\sec {x}+1}=x-\operatorname {tg} {\frac {x}{2}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f3ecb7997307355031296ec810afde0528f03c1f)
Integrali trigonometrijskih funkcija koje sadrže samo csc
![{\displaystyle \int \csc {cx}\,dx=-{\frac {1}{c}\ln {\left|\csc {cx}+\operatorname {ctg} {cx}\right|}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eb4a64c44d5cfc155e100a7d2c84e73261cbbe9a)
![{\displaystyle \int \csc ^{2}{x}\,dx=-\operatorname {ctg} {x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39e6633fa4455a767ff9a8699b6ca70a8602a522)
![{\displaystyle \int \csc ^{n}{cx}\,dx=-{\frac {\csc ^{n-1}{cx}\cos {cx}{c(n-1)}\,+\,{\frac {n-2}{n-1}\int \csc ^{n-2}{cx}\,dx+C\qquad {\mbox{ (za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a343dbf26dad33a647104dd8975f6cdb92aa8a27)
Integrali trigonometrijskih funkcija koje sadrže samo ctg
![{\displaystyle \int \operatorname {ctg} cx\;dx={\frac {1}{c}\ln |\sin cx|\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/291bb400be398e7cda5f8cf035ad4a6b1a4cce95)
![{\displaystyle \int \operatorname {ctg} ^{n}cx\;dx=-{\frac {1}{c(n-1)}\operatorname {ctg} ^{n-1}cx-\int \operatorname {ctg} ^{n-2}cx\;dx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a2a30c76ab4920164972aea021bae19d3e8a51d)
![{\displaystyle \int {\frac {dx}{1+\operatorname {ctg} cx}=\int {\frac {\operatorname {tg} cx\;dx}{\operatorname {tg} cx+1}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/85ff20deaee8b9d76270fb3a0042aa597ed19092)
![{\displaystyle \int {\frac {dx}{1-\operatorname {ctg} cx}=\int {\frac {\operatorname {tg} cx\;dx}{\operatorname {tg} cx-1}\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/100a544a7820eab0358431607b691854a789c7b3)
Integrali trigonometrijskih funkcija koje sadrže i sin i cos
![{\displaystyle \int {\frac {dx}{\cos cx\pm \sin cx}={\frac {1}{c{\sqrt {2}\ln \left|\operatorname {tg} \left({\frac {cx}{2}\pm {\frac {\pi }{8}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d25ad324695f4e881ab4fdd4a9f6258941aea1e3)
![{\displaystyle \int {\frac {dx}{(\cos cx\pm \sin cx)^{2}={\frac {1}{2c}\operatorname {tg} \left(cx\mp {\frac {\pi }{4}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4d9efdd5ea1acedb353861479ff94bcbe3bbb930)
![{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}={\frac {1}{n-1}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b5d0249eafa1173290fe7eba4bdcfbaac6213b4d)
![{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx+\sin cx}={\frac {x}{2}+{\frac {1}{2c}\ln \left|\sin cx+\cos cx\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/08b2e6768df4f04cc15879333fe3be7cf90df1a1)
![{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx-\sin cx}={\frac {x}{2}-{\frac {1}{2c}\ln \left|\sin cx-\cos cx\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/beba628b2eaab93eafcf12a300f44513a8976c93)
![{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx+\sin cx}={\frac {x}{2}-{\frac {1}{2c}\ln \left|\sin cx+\cos cx\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f795e181ffe95b2a5441a673bd77ae4d6ab6c390)
![{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx-\sin cx}=-{\frac {x}{2}-{\frac {1}{2c}\ln \left|\sin cx-\cos cx\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a7aaf6a82ff5b8ac679ff6e79eea2222478fe293)
![{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+\cos cx)}=-{\frac {1}{4c}\operatorname {tg} ^{2}{\frac {cx}{2}+{\frac {1}{2c}\ln \left|\operatorname {tg} {\frac {cx}{2}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6535947157083a62830966337d24402d0247efa)
![{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+-\cos cx)}=-{\frac {1}{4c}\operatorname {ctg} ^{2}{\frac {cx}{2}-{\frac {1}{2c}\ln \left|\operatorname {tg} {\frac {cx}{2}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/938221a4f9fdf36b16a08d5b0c57c1226568317b)
![{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1+\sin cx)}={\frac {1}{4c}\operatorname {ctg} ^{2}\left({\frac {cx}{2}+{\frac {\pi }{4}\right)+{\frac {1}{2c}\ln \left|\operatorname {tg} \left({\frac {cx}{2}+{\frac {\pi }{4}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e61a523a5a48b847f082cf472ed1ed518994a1c6)
![{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1-\sin cx)}={\frac {1}{4c}\operatorname {tg} ^{2}\left({\frac {cx}{2}+{\frac {\pi }{4}\right)-{\frac {1}{2c}\ln \left|\operatorname {tg} \left({\frac {cx}{2}+{\frac {\pi }{4}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c672aacf3edf345d7cc9f99cf45a428b1f5d27)
![{\displaystyle \int \sin cx\cos cx\;dx={\frac {1}{2c}\sin ^{2}cx\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9074401068e3a51080558b76cac5496d166c0960)
![{\displaystyle \int \sin c_{1}x\cos c_{2}x\;dx=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}+C\qquad {\mbox{(za }|c_{1}|\neq |c_{2}|{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/20e7b1217d6f5ea6114760c80aea90ad1b98bacb)
![{\displaystyle \int \sin ^{n}cx\cos cx\;dx={\frac {1}{c(n+1)}\sin ^{n+1}cx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ab92087fd671835fe17ee16ce0c8d11decf43e62)
![{\displaystyle \int \sin cx\cos ^{n}cx\;dx=-{\frac {1}{c(n+1)}\cos ^{n+1}cx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/06c3322ec7bf9a012bcb954b224471d39061da94)
![{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}+{\frac {n-1}{n+m}\int \sin ^{n-2}cx\cos ^{m}cx\;dx+C\qquad {\mbox{(za }m,n>0{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d6a09e8f1d82872c0e19041a3b279e9a5969ac)
- također:
![{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}+{\frac {m-1}{n+m}\int \sin ^{n}cx\cos ^{m-2}cx\;dx+C\qquad {\mbox{(za }m,n>0{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/53e9f227db97b336a0dcd04e58471e101f413f80)
![{\displaystyle \int {\frac {dx}{\sin cx\cos cx}={\frac {1}{c}\ln \left|\operatorname {tg} cx\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62ea4d9f87e76e7bd395568288631af84d699287)
![{\displaystyle \int {\frac {dx}{\sin cx\cos ^{n}cx}={\frac {1}{c(n-1)\cos ^{n-1}cx}+\int {\frac {dx}{\sin cx\cos ^{n-2}cx}+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fc26f73653fe0bc6766ff51400fd8aafe549c74a)
![{\displaystyle \int {\frac {dx}{\sin ^{n}cx\cos cx}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}+\int {\frac {dx}{\sin ^{n-2}cx\cos cx}+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d40351882b649209558dab8ab3a7ed31d1f984bb)
![{\displaystyle \int {\frac {\sin cx\;dx}{\cos ^{n}cx}={\frac {1}{c(n-1)\cos ^{n-1}cx}+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/74fbe7bd0d9fb049fbe8b3ffe1196665463acc80)
![{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos cx}=-{\frac {1}{c}\sin cx+{\frac {1}{c}\ln \left|\operatorname {tg} \left({\frac {\pi }{4}+{\frac {cx}{2}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e13d4bf5722a46f12531f8fb070eb0532a832e65)
![{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos ^{n}cx}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}-{\frac {1}{n-1}\int {\frac {dx}{\cos ^{n-2}cx}+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00cda53c0b1896ca9281add59a0353936182da3e)
![{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos cx}=-{\frac {\sin ^{n-1}cx}{c(n-1)}+\int {\frac {\sin ^{n-2}cx\;dx}{\cos cx}+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9470b7d41c008a1a7593ee03ff723a3d19a2c85c)
![{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}-{\frac {n-m+2}{m-1}\int {\frac {\sin ^{n}cx\;dx}{\cos ^{m-2}cx}+C\qquad {\mbox{(za }m\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9306771784121cfcb8f0a193e348422d01122ba4)
- također:
![{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}+{\frac {n-1}{n-m}\int {\frac {\sin ^{n-2}cx\;dx}{\cos ^{m}cx}+C\qquad {\mbox{(za }m\neq n{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bb3ba32e18561311651094b8604eeb6c27682d94)
- također:
![{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}-{\frac {n-1}{n-1}\int {\frac {\sin ^{n-1}cx\;dx}{\cos ^{m-2}cx}+C\qquad {\mbox{(za }m\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3fa7ad3efc45fd5bb6b6fe4cbdc8059008f69189)
![{\displaystyle \int {\frac {\cos cx\;dx}{\sin ^{n}cx}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6c60048998e51b71249ac1f571313abc8bd1581f)
![{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin cx}={\frac {1}{c}\left(\cos cx+\ln \left|\operatorname {tg} {\frac {cx}{2}\right|\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d021765ffa9b96cdf95ef2f4f7327075f638528f)
![{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin ^{n}cx}=-{\frac {1}{n-1}\left({\frac {\cos cx}{c\sin ^{n-1}cx)}+\int {\frac {dx}{\sin ^{n-2}cx}\right)+C\qquad {\mbox{(za }n\neq 1{\mbox{)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/439b02b97a0cd85eff7eebc834dcbc5e2bf2737f)
![{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}-{\frac {n-m-2}{m-1}\int {\frac {cos^{n}cx\;dx}{\sin ^{m-2}cx}+C\qquad {\mbox{(za }m\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7aae556a0ad61774ebc97a450bf7e2b680db5b96)
- također:
![{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}+{\frac {n-1}{n-m}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m}cx}+C\qquad {\mbox{(za }m\neq n{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7bc2697c6703b36029064d57e6c0d231e223cc4)
- također:
![{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}-{\frac {n-1}{m-1}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m-2}cx}+C\qquad {\mbox{(za }m\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5e1b903f47135e2502d5a3fe772684e6e3596a74)
Integrali trigonometrijskih funkcija koje sadrže i sin i tg
![{\displaystyle \int \sin cx\operatorname {tg} cx\;dx={\frac {1}{c}(\ln |\sec cx+\operatorname {tg} cx|-\sin cx)\,\!+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3849cb72fbc0ca2674fc926af06588c08ff1b69d)
![{\displaystyle \int {\frac {\operatorname {tg} ^{n}cx\;dx}{\sin ^{2}cx}={\frac {1}{c(n-1)}\operatorname {tg} ^{n-1}(cx)+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a08ad67f47ba91d735e194c388d949a404a11f6c)
Integrali trigonometrijskih funkcija koje sadrže i cos i tg
![{\displaystyle \int {\frac {\operatorname {tg} ^{n}cx\;dx}{\cos ^{2}cx}={\frac {1}{c(n+1)}\operatorname {tg} ^{n+1}cx+C\qquad {\mbox{(za }n\neq -1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1647b9d31b91d9b483fcd5e97d440445fc2db12f)
Integrali trigonometrijskih funkcija koje sadrže i sin i ctg
![{\displaystyle \int {\frac {\operatorname {ctg} ^{n}cx\;dx}{\sin ^{2}cx}={\frac {1}{c(n+1)}\operatorname {ctg} ^{n+1}cx+C\qquad {\mbox{(za }n\neq -1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1bbaa7db950b86209b83a2b9eeda0813604de301)
Integrali trigonometrijskih funkcija koje sadrže i cos i ctg
![{\displaystyle \int {\frac {\operatorname {ctg} ^{n}cx\;dx}{\cos ^{2}cx}={\frac {1}{c(1-n)}\operatorname {tg} ^{1-n}cx+C\qquad {\mbox{(za }n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1a63a4a2373251486f2f96f81eeebbb17dad7ba7)
Integrali trigonometrijskih funkcija koje sadrže i tg i ctg
![{\displaystyle \int {\frac {\operatorname {tg} ^{m}(cx)}{\operatorname {ctg} ^{n}(cx)}\;dx={\frac {1}{c(m+n-1)}\operatorname {tg} ^{m+n-1}(cx)-\int {\frac {\operatorname {tg} ^{m-2}(cx)}{\operatorname {ctg} ^{n}(cx)}\;dx+C\qquad {\mbox{(za }m+n\neq 1{\mbox{)}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0538d0b5c801cfa4fba17a4818f39219c3dd5c5e)
Integrali trigonometrijskih funkcija sa simetričnim granicama
![{\displaystyle \int _{-c}^{c}\sin {x}\;dx=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99172209bfb37953d66d12a8b011fa92a578462f)
![{\displaystyle \int _{-c}^{c}\cos {x}\;dx=2\int _{0}^{c}\cos {x}\;dx=2\int _{-c}^{0}\cos {x}\;dx\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b54568db6dda44564cb7875f216fccfc1204f9af)
![{\displaystyle \int _{-c}^{c}\operatorname {tg} {x}\;dx=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a5d17ba4091f0c6d6e691b1020bf06a72eabf914)