Amḍan asemlal

Tagensest tudlift n umḍan asemlal x + i y = r eiφ s tallelt n yiwen umaway

Deg tusnakt, amḍan asemlal d amḍan yezmer ad yettwasumer s talɣa a + bi, anda (a) d (b) id sin n yimḍanen ilawen, ma d i d yiwet n tigget tasnumkant (d anamek-is ur nezmir ara ad tt-naf deg tilawt) yettwammlen akken i² = −1. Amḍan ( a ) yettwasemma d amur ilaw n umḍan asemlal, ma d ( b ) d amur asugnan-ines.

Tagrumma n yimḍanen isemlalen tettwasemma s uzemz C. Tesnulfa-d akken ad tesnerni tagrumma n yimḍanen ilaw R s umḍan i yesɛan tazmert ad yefk tifrat i kra n tenkarin ur nesɛi ara tifrat deg R, am x² = −1. Yal amḍan ilaw d amḍan asemlal anda amur asugnan-ines d ilem. Ihi, tagrumma n yimḍanen ilaw d tadugrumma n tegrumma n yimḍanen isemlalen.

Yella waṭas n yisnasen n yimḍanen isemlalen deg yiḥricen yemgaraden n tusnakt d tussna. Deg tsengama, ttusemrasen deg uselmed n wahilen n trisiti akked umussu ahuzzan. Deg tsengama tatrart, ttusemrasen deg tenfalit n yimrigen imaẓlayen. Deg tesnileswalt tanmettit, ttusemrasen deg uselmed n yiferdisen n tutlayt. Ttusemrasen daɣen deg uẓawan d uselmed n yiẓuran n tenkarin.

Amḍan i

Amḍan i d tigget tasugnant. Yettwammel s i² = -1. Asekcam n umḍan-agi yefka tazmert i tusnakt ad taf tifrat i waṭas n tenkarin ur nesɛi ara tifrat deg umaɣrad n yimḍanen ilaw.

Iḥricen n umḍan asemlal x+iy

Amḍan asemlal z = a + bi yegber sin n yiḥricen:

  1. Amur ilaw (a): D amḍan ilaw yettwazemren ad yili d amagnu neɣ d ameɣẓan.
  2. Amur asugnan (bi): Yegber amḍan ilaw b yeddan d tigget tasugnant i.
Kra n imḍanen iselmalen deg uɣawas

Tanekda

Talɣa tajebrant

Z = a + bi Anda:

  • a d amur ilaw
  • b d amur asugnan
  • i d tigget tasugnant

Talɣa tasfaylut

Z = r(cos(ϕ) + i sin(ϕ)) Anda:

  • r neɣ |z| d azal amagdez (module)
  • ϕ neɣ arg(z) d tiɣiret (argument)

Tikwal amḍan asemlal yettwaru deg yiwet n talɣiwin igi:

  • talɣa tasusmirt s usumres n tanfalit n Euler
  • z = (r, θ) Talɣa tasfaylut
  • z = r (cosθ + i sinθ) = r cis (θ) (s tuggza cis[1])


azal amagdez n umḍan asemlal z d aẓar amkuẓ n timernit n yimkuẓen n yiḥricen ilawen akked isugnanen :

akken ad nsiḍen θ sef talɣa taljebrit a + bi, nezmer ad nessemres tiwuriwin arccos, arcsin neɣ arctan :

Timhal d wassaɣen

Timernit

Ma yella d sin n yimḍanen isemlalen:


Timernit n sin yimḍanen isemlalen d timernit n yiḥricen ilawanen d yiḥricen isugnanen yal yiwen ɣer wayeḍ.

Afaris

Ma yella d sin n yimḍanen isemlalen:



Afaris n sin yimḍanen isemlalen yettwaxdem s usemres n tsuddest s usmekti bell i

Taẓunt

Ma yella d sin n yimḍanen isemlalen ():


Taẓunt n sin yimḍanen isemlalen tettwaxdem s usemres n uneftay n umḍan asemlal deg umetṭerf d wadda, sakin s ubeṭṭu n ufaris ɣef tigget.

Aneftay

Tagensest tudlift n uneftay n umḍan asemlal


Aneftay n umḍan asemlal id .

Aneftay yesɛa amur ilaw yecrek d umḍan amenzu, ma d amur asugnan yettuɣal d amgal-is.

Amezruy

Tikti n umḍan asemlal d tin yettwaxedmen s kra n yimekdiyen n tusnakt. Deg tazwara, imussnawen xeddmen fell-as akken ad afen tifrat i tenkarin ur nesɛi ara tifrat deg umagrad n yimḍanen ilaw. Amedya amezwaru n usemres n yiwet n tigget tasugnant i uselkin n tenkarit n uswir wis sin yettwaf-d deg yixeddimen n Gerolamo Cardano deg 1545. Deg useggas n 1572, Rafael Bombelli yesnulfa-d ilugan n tmahelt ɣef yimḍanen isemlalen deg udlis-ines L'Algebra. Deg lqern wis 18, imussnawen am Abraham de Moivre d Leonhard Euler ssnernin aselmed n yimḍanen isemlalen, ladɣa s usemres-nsen deg tmahilin tisnumkanin. Dɣa d Euler i d-yefkan azamul i i tigget tasugnant.

  • Deg lqern wis 16, imussnawen n tusnakt bdan ttnadint ɣef tifrat n tenkarin n uswir wis kraḍ d wis kuẓ.
  • Girolamo Cardano (1501-1576) d win i d-yewwin tikti tamezwarut n yimḍanen isemlalen.
  • Rafael Bombelli (1526-1572) yerra-d lwelha ɣer wamek ara nesemres imḍanen isemlalen deg tenkarin.
  • Leonhard Euler (1707-1783) d netta i d-yefkan isem i d tigget tasugnant.
  • Carl Friedrich Gauss (1777-1855) yessebded tazrawt tamatant n yimḍanen isemlalen.
Tuggza Alnamek Ameskar Azemz
℞. m. 15 amḍan ur yezmir ad yili acku amkuẓ-is (tazmert tis 2 ) tegda-d Cardan 1545
"tasugnant" Yal tasmekta yesɛan aẓar amkuẓ n umḍan azedran Descartes 1637
Euler 1777
azal amagdez r azal amagdez n umḍan asemlal a +bi id

Argand 1806
Azal amagdez n Z Karl Weierstrass
anaftay Anaftay n id Cauchy 1821
amḍan asemlal a + ib Gauss 1831
asugnan kan ihi
"Norme" amkuẓ n wazal amagdez
Tiɣiret Tiɣmert gar amaway n 1 akked n Z Cauchy 1838
Awṣil awṣil w wagaz A n yimsidag id umḍan asemlal a+bi 1847
  1. (en) Alan Sultan et Alice F. Artzt, The mathematics that every secondary school math teacher needs to know, Studies in Mathematical Thinking and Learning, Taylor & Francis, 2010, p. 326