Diferencialas

Funkcijos diferencialas taške .

Diferencialas – funkcijos pokyčio tiesinė pagrindinė dalis. Funkcija y = f(x), apibrėžta intervale (a, b), vadinama diferencijuojama taške x (a, b), jei jos pokytį Δy = f(x + Δx) – f(x) galima išreikšti dviejų dėmenų suma: Δy = AΔx + o(Δx); čia A – skaičius, nepriklausantis nuo Δx.

Direfencialas žymimas: , iš to seka, kad funkcijos pokytis Δy mažai skiriasi nuo jos diferencialo:[1]

Pavyzdžiui, yra funkcija f(x)=x². Tos funkcijos išvestinė yra

Įstatykime vietoje x kokią nors reikšmę, pavyzdžiui, x=3.

Δy = AΔx + o(Δx) = 2xΔx + (Δx)²=6Δx + (Δx)²,

čia A = 2x = 6 = f'(x); (Δx)² = o(Δx).

Taigi funkcijos pokytis yra Δy = f(x + Δx) – f(x) = AΔx + o(Δx), o diferencialas dy = AΔx = y'Δx = y’dx = f'(x)dx; Δx = dx.

Diferencijuojamumui būtina sąlyga yra funkcijos tolydumas. Tačiau ne visos tolydžios funkcijos yra diferencijuojamos. Kaip vienas iš tokių nediferencijuojamų funkcijų pavyzdžių yra Vejerštraso funkcija.

Taip pat skaitykite

Šaltiniai

  1. Autorių kolektyvas. Matematika. Vadovėlis XI klasei ir gimnazijų III klasei II dalis. – Kaunas: Šviesa, 2004. – 162 p. ISBN 5-430-03784-2