Coordenadas elípticas
As coordenadas elípticas são um sistema bidimensional de coordenadas curvilíneas ortogonais, onde as linhas coordenadas são elipses e hipérboles com os mesmos focos. Os focos e estão geralmente fixos nas posições e , respectivamente, sobre o eixo de um sistema cartesiano cujos eixos são eixos de simetría das linhas coordenadas hiperbólicas e elípticas.
As coordenadas elípticas cilíndricas são um sistema tridimensional obtido rotacionando o sistema anterior em torno do eixo dos focos e adicionando uma coordenada angular polar adicional.
Definição
A definição mais comum das coordenadas elípticas bidimensionais é:
(left)
Onde:
- é um número real não-negativo e
- .
No plano complexo, existe uma relação equivalente dada por:
Estas definições correspondem à elipses e hipérboles. A identidade trigonométrica
mostra que as curvas com constante são elipses, enquanto que a identidade trigonométrica hiperbólica
mostra que as curvas com constante são hipérboles.
Aplicações
As aplicacões clássicas das coordenadas elípticas são a resolução de equações diferenciais parciais como a equação de Laplace ou a equação de Helmholtz, para as que as coordenadas elípticas admitam separação de variáveis. Um exemplo típico é a carga elétrica que rodeia um condutor plano de largura 2a. Ou o campo de duas cargas elétricas pontuais de mesmo sinal a uma distância 2a.