Второй закон Ньютона
Второ́й зако́н Нью́то́на — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона. Основной закон динамики[1][2][3].
Объектом, о котором идёт речь во втором законе Ньютона, является материальная точка, обладающая неотъемлемым свойством — инерцией[4], величина которой характеризуется массой. В классической (ньютоновской) механике масса материальной точки полагается постоянной во времени и не зависящей от каких-либо особенностей её движения и взаимодействия с другими телами[5][6][7][8].
Второй закон Ньютона в его наиболее распространённой формулировке, справедливой для скоростей, много меньших скорости света, утверждает: в инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, не зависит от её природы[9], совпадает с ней по направлению и обратно пропорционально массе материальной точки[10].
Второй закон Ньютона в классической механике
Возможные формулировки
- В своём труде «Математические начала натуральной философии» Исаак Ньютон приводит следующую формулировку[11] своего закона:
Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
- Современная формулировка:
В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.
- Обычно этот закон записывается в виде формулы
- где — ускорение тела, — сила, приложенная к телу, а — масса тела.
- Или в ином виде:
- Формулировка второго закона Ньютона с использованием понятия импульса:
В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на неё силе[12]:
Область применения закона
Второй закон Ньютона в классической механике сформулирован применительно к движению материальной точки. Предполагается, что масса материальной точки неизменна во времени[13][14][15]. Уравнения, соответствующие данному закону, называются уравнениями движения материальной точки или основными уравнениями динамики материальной точки.
Иногда в рамках классической механики предпринимались попытки распространить сферу применения уравнения и на случай тел переменной массы. Однако вместе с таким расширительным толкованием уравнения приходилось существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила[16][17].
В случае, когда на материальную точку действует несколько сил, каждая из них сообщает точке ускорение, определяемое вторым законом Ньютона так, как если бы других сил не было (принцип суперпозиции сил). Поэтому результирующее ускорение материальной точки можно определить по второму закону Ньютона, подставив в него равнодействующую силу[18].
Уравнение второго закона Ньютона предполагает скалярную аддитивность масс[19].
Помимо материальной точки, уравнение второго закона Ньютона применимо также для описания механического движения центра масс механической системы. Центр масс движется, как материальная точка, имеющая массу, равную массе всей системы, и находящаяся под действием всех внешних сил, приложенных к точкам системы (теорема о движении центра масс системы).
Уравнение второго закона Ньютона может быть записано в виде для распределённой силы, где — элемент массы ( — плотность вещества, — элементарный объём), а — бесконечно малая действующая на него сила ( — плотность силы). Отталкиваясь от такой записи, получают[20] уравнение, выражающее баланс импульса для сплошных сред — уравнение движения сплошной среды (в частности, в гидродинамике идеальной (невязкой) жидкости — уравнение Эйлера, а в гидродинамике линейно-вязкой жидкости — уравнение Навье — Стокса).
Второй закон Ньютона выполняется только в инерциальных системах отсчёта[21][22]. Тем не менее, добавляя к силам, действующим со стороны других тел, силы инерции, для описания движения в неинерциальных системах отсчёта можно пользоваться уравнением второго закона Ньютона[23]. В таком случае для неинерциальной системы отсчёта уравнение движения записывается в той же форме, что и для инерциальной системы: масса тела, умноженная на его ускорение относительно неинерциальной системы отсчёта, равна по величине и направлению равнодействующей всех сил, включая и силы инерции, приложенные к телу[24][25].
Логическая роль второго закона Ньютона
В ньютоновском изложении классической механики законы Ньютона ниоткуда не «выводятся», они имеют статус аксиом, базирующихся на совокупности экспериментальных фактов. Как и аксиомы математики, аксиомы ньютоновской динамики можно сформулировать немного по-разному.
При одном подходе второй закон Ньютона позиционируется как экспериментально проверяемое утверждение о пропорциональности ускорения вызывающей его силе и, одновременно, определение инертной массы тела через отношение величин силы и ускорения[26][27]. Тогда основная идея второго закона состоит в декларации линейности соотношения «сила—ускорение», то есть что именно эти величины (а не, скажем, сила и скорость) и именно таким образом (а не квадратично и т. п.) связаны между собой.
При другом подходе можно ввести инертную массу независимо от второго закона Ньютона, через массу определённого тела, принимаемого за эталон. Тогда второй закон содержит два независимо экспериментально проверяемых утверждения: о пропорциональности ускорения силе и обратной пропорциональности массе[28].
Во многих практических и учебных задачах второй закон Ньютона позволяет вычислять силу. Но данный закон не является дефиницией силы[29] (высказывание типа «по определению, сила есть произведение массы на ускорение» неуместно), иначе он превратился бы в тавтологию.
В случае отсутствия воздействия на тело со стороны других тел (), из второго закона Ньютона следует, что ускорение тела равно нулю. Отсюда может показаться, что первый закон Ньютона входит во второй как его частный случай. Однако, это не так, поскольку именно первым законом постулируется существование инерциальных систем отсчёта, что является самостоятельным содержательным утверждением. Соответственно, первый закон Ньютона формулируется независимо от второго[30].
Второй закон Ньютона устанавливает связь между динамическими и кинематическими величинами[32]. Кроме того, уравнение закона может рассматриваться как уравнение связи между физическими величинами при определении единиц силы в системах СИ, СГС и других[33]. Единица силы определяется как такая сила, которая материальной точке с массой, равной единице массы, принимаемой в качестве основной, сообщает ускорение, равное единице ускорения, определённой ранее в качестве производной единицы[34]. (При независимом выборе единиц массы, силы и ускорения выражение второго закона нужно писать в виде , где — коэффициент пропорциональности, определяющийся выбором единиц измерения[35][36][37][38]; в частности, такая форма записи — с размерным коэффициентом — практикуется в американской технической литературе при использовании британской системы единиц[39][40][41].)
Сила во втором законе Ньютона зависит только от координат и скорости материальной точки: . Основная задача физической механики сводится к нахождению функции [42].
Формула второго закона Ньютона выражает принцип причинности классической механики. Координаты и скорости материальной точки в момент времени (где ) непрерывно и однозначно определяются через их значения в момент времени и заданную силу , действующую на материальную точку. Разлагая в ряд Тейлора и ограничиваясь малыми первого порядка по , получаем[43]: , . Форма, в которой в механике реализуется причинность, называется механистическим или лапласовским детерминизмом[44].
Уравнение второго закона Ньютона инвариантно относительно преобразований Галилея. Это утверждение называется принципом относительности Галилея[45].
В классической механике закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса являются следствиями второго закона Ньютона, однородности времени, однородности и изотропности пространства, а также некоторых предположений относительно характера действующих сил[46].
В случае, когда сила постоянна, интегрирование уравнения второго закона Ньютона приводит к равенству . Это соотношение показывает, что под действием заданной силы определённое изменение скорости у тела с большей массой происходит за более продолжительный промежуток времени. Поэтому говорят, что все тела обладают инерцией, а массу называют мерой инерции тела[47].
Запись закона в разных системах координат
Векторная запись второго закона Ньютона верна для любой инерциальной системы координат, относительно которой определяются входящие в этот закон величины (сила, масса, ускорение)[48]. Однако, разложение на компоненты (проекции) будет различным для декартовой, цилиндрической и сферической систем. Интерес также представляет разложение на нормальную и тангенциальную составляющие.
, , , где , а орты декартовой системы , , направлены по осям координат (в сторону возрастания конкретной координаты),
, , , где , а орты , , цилиндрической системы берутся в точке приложения силы и направлены, соответственно, от оси под 900 к ней, по окружности в плоскости с центром на оси, и вдоль (в сторону возрастания конкретной координаты),
, , , где , а орты , , сферической системы берутся в точке приложения силы и направлены, соответственно, от центра , по «параллелям», и по «меридианам» (в сторону возрастания конкретной координаты).
- Разложение в соприкасающейся плоскости
В соприкасающейся плоскости ускорение материальной точки массой и действующую на неё силу можно разложить на нормальную (перпендикулярную касательной к траектории в соприкасающейся плоскости) и тангенциальную (параллельную касательной к траектории в соприкасающейся плоскости) составляющие.
Абсолютная величина нормальной силы равна , где — радиус кривизны траектории материальной точки, — абсолютная величина её скорости. Нормальная сила направлена к центру кривизны траектории материальной точки. В случае круговой траектории радиуса абсолютная величина нормальной силы , где — угловая скорость обращения точки. Нормальную силу также называют центростремительной.
Тангенциальная составляющая силы равна , где — дуговая координата по траектории точки[49]. Если , то сила совпадает по направлению с вектором скорости и её называют движущей силой. Если , то сила противоположна по направлению вектору скорости и её называют тормозящей силой.
Второй закон за пределами классической механики
В релятивистской динамике
Второй закон Ньютона в виде приближённо справедлив только для скоростей, много меньших скорости света, и в инерциальных системах отсчёта.
В виде второй закон Ньютона точно справедлив также в инерциальных системах отсчёта специальной теории относительности и в локально инерциальных системах отсчёта общей теории относительности, однако при этом вместо прежнего выражения для импульса используется равенство , где — скорость света[50].
Существует и четырёхмерное релятивистское обобщение второго закона Ньютона. Производная четырёхимпульса по собственному времени материальной точки равна четырёхсиле [51]:
- .
В релятивистской динамике вектор трёхмерного ускорения уже не параллелен вектору трёхмерной силы [52].
В квантовой механике
Законы ньютоновской динамики, в том числе второй закон Ньютона, неприменимы, если длина волны де Бройля рассматриваемого объекта соизмерима с характерными размерами области, в которой изучается его движение. В этом случае необходимо пользоваться квантовомеханическими законами[53].
Тем не менее, второй закон Ньютона при определённых условиях актуален применительно к движению волнового пакета в квантовой механике. Если потенциальная энергия волнового пакета пренебрежимо мало изменяется в области нахождения пакета, то производная по времени среднего значения импульса пакета будет равна силе, понимаемой как градиент потенциальной энергии, взятый с обратным знаком (теорема Эренфеста).
Для описания движения частицы в потенциальном поле, в квантовой механике справедливо операторное уравнение, по форме совпадающее с уравнением второго закона Ньютона: . Здесь: — масса частицы, — оператор скорости, — оператор импульса, — оператор потенциальной энергии[54].
Видоизменённый второй закон Ньютона используется и при квантовомеханическом описании движения электронов в кристаллической решётке. Взаимодействие электрона с периодическим электромагнитным полем решётки при этом учитывается введением понятия эффективной массы.
Научно-историческое значение закона
Оценивая значение второго закона Ньютона, А. Эйнштейн писал:
Дифференциальный закон является той единственной формой причинного объяснения, которая может полностью удовлетворять современного физика. Ясное понимание дифференциального закона есть одно из величайших духовных достижений Ньютона… Только переход к рассмотрению явления за бесконечно малое время (т. е. к дифференциальному закону) позволил Ньютону дать формулировку, пригодную для описания любого движения… Так Ньютон пришёл… к установлению знаменитого закона движения:
Вектор ускорения × Масса = Вектор силы. Это — фундамент всей механики и, пожалуй, всей теоретической физики.
— Эйнштейн А. Собрание научных трудов. — М.: Наука, 1967. — Т. 4. — С. 82, 92. — 599 с. — (Классики науки). — 31 700 экз.
Все законы природы для сил в зависимости от свойств тел, их состояний и движений получаются из опытов и устанавливаются всегда и только на основе решения уравнения , которое употребляется для выражения силы[55].
Второй закон Ньютона является важной частью парадигмы, принятой в классической физической картине мира[56].
Лагранжево и гамильтоново обобщения закона
В аналитической механике существует два аксиоматических подхода. При одном подходе в качестве аксиомы принимается второй закон Ньютона и из него выводятся уравнения Лагранжа. При другом подходе в качестве аксиомы принимаются уравнения Лагранжа. Тогда второй закон Ньютона рассматривается как следствие из них [57].
Из уравнений Лагранжа для произвольной голономной системы, на которую действуют как потенциальные (), так и непотенциальные () обобщённые силы, следует, что производная по времени обобщённого импульса равна суммарной обобщённой силе :
- .
Записанные так в декартовых координатах уравнения Лагранжа называются уравнениями движения в форме Ньютона[58].
Теорема об изменении обобщённого импульса обобщает и включает как частные случаи теоремы ньютоновской динамики об изменении количества движения и об изменении кинетического момента[59].
- ,
где, как и выше, — обобщённый импульс, через обозначена функция Гамильтона, а — лагранжиан, то есть разность кинетической и потенциальной энергий системы.
См. также
- Первый закон Ньютона
- Уравнение Гейзенберга
- Уравнение Мещерского
- Уравнение Эренфеста
- Теорема о движении центра масс системы
- Принцип причинности
Примечания
- ↑ Г. А. Бугаенко, В. В. Маланин, В. И. Яковлев Основы классической механики. — М., Высшая школа, 1999. — ISBN 5-06-003587-5 — Тираж 3000 экз. — c. 43
- ↑ Кузнецов Б. Г. Основные принципы физики Ньютона // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — Тираж 5000 экз. — с. 188;
- ↑ Тарасов В. Н., Бояркина И. В., Коваленко М. В., Федорченко Н. П., Фисенко Н. И. Теоретическая механика. — М., ТрансЛит, 2012. — ISBN 978-5-94976-455-8. — Тираж 1000 экз. — с. 249
- ↑ То же, что инертность. См. Инерция // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 146. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ "Дополнительной характеристикой (по сравнению с геометрическими характеристиками) материальной точки является скалярная величина m — масса материальной точки, которая, вообще говоря, может быть как постоянной, так и переменной величиной. ... В классической ньютоновской механике материальная точка обычно моделируется геометрической точкой с присущей ей постоянной массой) являющейся мерой её инерции." стр. 137 Седов Л. И., Цыпкин А. Г. Основы макроскопических теорий гравитации и электромагнетизма. М: Наука, 1989.
- ↑ Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 87. — 572 с. «Масса материальной точки считается постоянной величиной, не зависящей от обстоятельств движения».
- ↑ Голубев Ю. Ф. Основы теоретической механики. — М.: МГУ, 2000. — С. 160. — 720 с. — ISBN 5-211-04244-1. «Аксиома 3.3.1. Масса материальной точки сохраняет своё значение не только во времени, но и при любых взаимодействиях материальной точки с другими материальными точками независимо от их числа и от природы взаимодействий».
- ↑ Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 287. — 416 с. — ISBN 5-06-003117-9. «В классической механике масса каждой точки или частицы системы считается при движении величиной постоянной»
- ↑ Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы. — М.: Наука, 1982. — С.39.
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 107
- ↑ Исаак Ньютон. Математические начала натуральной философии. — М.: Наука, 1989. — С. 40. — 690 с. — («Классики науки»). — 5000 экз. — ISBN 5-02-000747-1.
- ↑ Сивухин Д. В. Общий курс физики. — М.: Физматлит; изд-во МФТИ, 2005. — Т. I. Механика. — С. 76. — 560 с. — ISBN 5-9221-0225-7.
- ↑ Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 254. — 572 с. «…второй закон Ньютона справедлив только для точки постоянного состава. Динамика систем переменного состава требует особого рассмотрения».
- ↑ Иродов И. Е. Основные законы механики. — М.: Высшая школа, 1985. — С. 41. — 248 с.«В ньютоновской механике… m=const и dp/dt=ma».
- ↑ Kleppner D., Kolenkow R. J. An Introduction to Mechanics. — McGraw-Hill, 1973. — P. 112. — ISBN 0-07-035048-5. Архивировано 17 июня 2013 года. Архивированная копия . Дата обращения: 9 февраля 2013. Архивировано 17 июня 2013 года. «For a particle in Newtonian mechanics, M is a constant and (d/dt)(Mv) = M(dv/dt) = Ma».
- ↑ Зоммерфельд А. Механика = Sommerfeld A. Mechanik. Zweite, revidierte Auflage, 1944. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 45-46. — 368 с. — ISBN 5-93972-051-X.
- ↑ Кильчевский Н. А. Курс теоретической механики. Том 1. — М.: Наука, 1977. 480 с.
- ↑ 1 2 Яворский Б.М., Детлаф А.А., Лебедев А.К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — ISBN 978-5-488-01248-6. — Тираж 5 100 экз. — С. 38 - 39
- ↑ Орир Дж. Физика // М., Мир, 1981. — Тираж 75 000 экз. — Том 1. — с. 54
- ↑ Д. В. Александров, А. Ю. Зубарев, Л. Ю. Искакова. Введение в гидродинамику . Изд-во УрФУ, Екатеринбург (2012). — см. стр. 8-11. Дата обращения: 30 апреля 2023. Архивировано 8 июля 2022 года.
- ↑ Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 118
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 289
- ↑ Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 118-119
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 291
- ↑ Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 119
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 106
- ↑ Хайкин С. Э. Физические основы механики. — М.: Физматгиз, 1963. — C. 104
- ↑ Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы. — М.: Наука, 1982. — С. 30.
- ↑ Р. Ф. Фейнман Фейнмановские лекции по физике. Том I. Современная наука о природе Законы механики. — М.: Наука, 1978. — С. 209-210.
- ↑ Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 54
- ↑ Leonhard Euler. Theoria motus corporum solidorum seu rigidorum. — 1765. — С. 61.. Русский перевод: Эйлер Л. Основы динамики точки / Пер. с латинского В. С. Гофмана и С. П. Кондратьева. Под ред. В. Л. Егоршина. — М.—Л.: ГИТТЛ, 1938. — С. 390–391. — 500 с.
- ↑ Селезнев Ю. А. Основы элементарной физики. - М., Наука, 1966. - Тираж 100 000 экз. - с. 40
- ↑ Г. Д. Бурдун, Б. Н. Марков Основы метрологии. — М.: Издательство стандартов, 1972. — Тираж 30 000 экз. — С. 49.
- ↑ Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 24.
- ↑ Савельев И. В. Курс общей физики / 2-е изд., перераб. — М.: Наука, 1982. — Т. 1. Механика. Молекулярная физика. — С. 54. — 432 с. Архивировано 4 февраля 2014 года.
- ↑ Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1969. — С. 22. — 304 с. Архивировано 1 февраля 2014 года.
- ↑ Мултановский В.В. Курс теоретической физики: Классическая механика. Основы специальной теории относительности. Релятивистская механика. — М.: Просвещение, 1988. — С. 73. — 304 с. — ISBN 5-09-000625-3. Архивировано 5 июля 2014 года.
- ↑ «Не следует смешивать понятия силы и произведения массы на ускорение, которому она равна» (Фок В.А. Механика. Рецензия на книгу: Л. Ландау и Л. Пятигорский. Механика. (Теоретическая физика под общей редакцией проф. Л.Д. Ландау, т. I). Гостехиздат. Москва — Ленинград, 1940 // УФН. — 1946. — Т. 28, вып. 2–3. — С. 377–383. Архивировано 31 октября 2015 года.).
- ↑ Robert D. Zucker, Oscar Biblarz. Fundamentals of gas dynamics. — Hoboken, New Jersey: John Wiley & Sons, 2002. — С. 2. — 493 с. — ISBN 0-471-05967-6.
- ↑ Ascher H. Shapiro. The dynamics and thermodynamics of compressible fluid flow. — New York: The Ronald Press Company, 1953. — Т. 1. — С. 20. — xiii+647 с.
- ↑ James George Knudsen, Donald La Verne Katz. Fluid dynamics and heat transfer. — New York: McGraw-Hill, 1958. — С. 28. — 576 с.
- ↑ Сивухин Д. В. Общий курс физики. Механика. - М., Наука, 1979. - Тираж 50 000 экз. - с. 71-72
- ↑ Р. Ф. Фейнман Фейнмановские лекции по физике. Том I. Современная наука о природе Законы механики. — М.: Наука, 1978. — С. 164.
- ↑ Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. ISBN 5-06-003587-5 — Тираж 3 000 экз. — С. 47.
- ↑ Сивухин Д. В. Общий курс физики. Механика. - М., Наука, 1979. - Тираж 50 000 экз. - с. 94
- ↑ Сивухин Д. В. Общий курс физики. Механика. - М., Наука, 1979. - Тираж 50 000 экз. - с. 199
- ↑ Жирнов Н. И. Классическая механика. - М., Просвещение, 1980. - с. 34-35
- ↑ Р. Неванлинна Пространство, время и относительность. - М., Мир, 1966. - c. 202
- ↑ Тарасов В. Н., Бояркина И. В., Коваленко М. В. Теоретическая механика. - М., ТрансЛит, 2012. - ISBN 978-5-94976-455-8. - с. 254
- ↑ Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — С. 237.
- ↑ Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. — С. 347. — ISBN 5-06-003587-5
- ↑ Кычкин И. С., Сивцев В. И. Школьная физика: второй закон Ньютона Архивная копия от 30 мая 2019 на Wayback Machine // Международный журнал экспериментального образования. - 2016. № 3-2. - С. 194-197.
- ↑ Бутиков Е. И., Быков А. А., Кондратьев А. С. Физика для поступающих в вузы. — М.: Наука, 1982. — С. 544.
- ↑ Ландау Л. Д., Лившиц Е. М. Квантовая механика. — М., Наука, 1972. — с. 76
- ↑ Седов Л.И.Методы подобия и размерности в механике. — М.: Гостехтеориздат, 1954. — С. 21 - 28.
- ↑ Томас Кун Структура научных революций. — М., АСТ, 2020. — ISBN 978-5-17-122824-8. — с. 280-282
- ↑ Айзерман М.А. Классическая механика. — М.: Наука, 1980. — Тираж 17 500 экз. — С. 164-165
- ↑ Медведев Б. В. Начала теоретической физики. Механика, теория поля, элементы квантовой механики. — М.: Физматлит, 2007. — ISBN 978-5-9221-0770-9 — С. 38.
- ↑ Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. — С. 247. — ISBN 5-06-003587-5
Ссылки
- Gundlach J. H., Schlamminger S., Spitzer C. D., Choi K.-Y., Woodahl B. A., Coy J. J., Fischbach E. Laboratory Test of Newton’s Second Law for Small Accelerations (англ.). Phys. Rev. Lett., Vol. 98. American Physical Society (13 апреля 2007). Дата обращения: 7 апреля 2017. Архивировано 30 марта 2021 года.