Свёртка (математический анализ)

Свёрткаконволюция — операция в функциональном анализе, которая при применении к двум функциям и возвращает третью функцию, соответствующую взаимнокорреляционной функции и . Операцию свёртки можно интерпретировать как «схожесть» одной функции с отражённой и сдвинутой копией другой. Понятие свёртки обобщается для функций, определённых на произвольных измеримых пространствах, и может рассматриваться как особый вид интегрального преобразования. В дискретном случае свёртка соответствует сумме значений с коэффициентами, соответствующими смещённым значениям , то есть

Свёртка двух прямоугольных импульсов: в результате даёт треугольный импульс.
Свёртка прямоугольного импульса (входного сигнала) с импульсным откликом RC цепи

Определение

Пусть  — две функции, интегрируемые относительно меры Лебега на пространстве . Тогда их свёрткой называется функция , определённая формулой

В частности, при формула принимает вид

Свёртка определена при почти всех и интегрируема.

В случае, когда , а функции определены на промежутке , свёртку можно записать в виде

Впервые интегралы, являющиеся свёрткой двух функций, встречаются в трудах Леонарда Эйлера (1760-е годы); позднее свёртка появляется у Лапласа, Лакруа, Фурье, Коши, Пуассона и других математиков. Обозначение свёртки функций при помощи звёздочки впервые предложил Вито Вольтерра в 1912 году на своих лекциях в Сорбонне (опубликованы годом позже)[1].

Свойства

Коммутативность:

.

Ассоциативность:

.

Линейность (дистрибутивность по сложению и ассоциативность с умножением на скаляр):

,
,
.

Правило дифференцирования:

,

где обозначает производную функции по любой переменной.

Преобразование Лапласа:

.

Свойство фурье-образа:

,

где обозначает преобразование Фурье функции.

Если является матрицей дискретного преобразования Фурье, то:

,

где  — символ торцевого произведения матриц[2][3][4][5][6], обозначает произведение Кронекера,  — символ произведения Адамара (тождество является следствием свойств отсчётного скетча[7]).

Пример

График-гистограмма осадков
График функции — количество выпавшего снега в килограммах на начало часа.

Пусть стоит задача вычислить, как будет изменяться количество снега на каком-либо участке земли в зависимости от времени. Решение этой задачи можно разделить на два этапа:

  1. построить модель выпадения снега и модель таяния снега.
  2. каким-то образом соединить эти две модели в одну.
    Простой график одной ветви гиперболы.
    График зависимости количества нерастаявшего снега от времени прошедшего с момента его выпадения.

Задачи первого этапа решаются путём наблюдений и опытов, а задачи второго этапа — свёрткой получившихся на первом этапе моделей.

Пусть в результате решения задачи на первом этапе было построено две зависимости (математические модели):

  • зависимость количества выпавшего снега от текущего времени ,
  • зависимость доли нерастаявшего снега от времени, прошедшего с момента его выпадения .

Если бы снег не начинал таять, количество всех выпавших осадков  можно было бы посчитать путём сложения в дискретном случае:

,

или путём интегрирования в случае непрерывном:

.

Но в данном случае таяние снега имеет место и, более того, оно зависит не только от текущего общего количества снега, но и от того, в какой момент времени выпал этот конкретный объём снега. Так снег, выпавший две недели назад, может уже испариться, в то время как снег, выпавший полчаса назад, ещё будет лежать и даже не начнёт подтаивать.

Получается, что для снега, выпавшего в разное время, нужно построить свою модель таяния и как-то сложить все эти модели вместе.

Для этих целей и можно использовать понятие математической свёртки. Пусть в момент времени рассматривается снег, который выпал в момент времени , тогда

  •  — время выпадения снега. Например, 13:00;
  •  — количество выпавшего в момент снега. Например, 7 кг;
  •  — момент времени, для которого нам нужно узнать состояние выпавшего в снега. Например, 15:00;
  •  — количество времени, прошедшее с момента выпадения до момента расчёта оставшейся доли снега. То есть 15:00 − 13:00;
  •  — доля снега, которая не растаяла после того, как пролежала часов.

Нужно для каждого количества снега, выпавшего в момент времени , сложить множество моделей в одну функцию. Если это сделать, получится сумма в дискретном случае:

или интеграл в непрерывном:

Графически функция изображена ниже, где разными цветами представлены вклады каждой кучи снега из графика .

График свёртки количества выпавшего снега и закона растаивания.
График функции , где разным цветом представлен вклад каждой кучи снега (цвета вкладов соответствуют цветам куч выпавшего снега на графике выше)

Функция полностью моделирует поведение снега, выпавшего согласно модели . Так, на графике выше видно, что общее количество снега увеличивается тремя скачками, но снег начинает таять сразу, не дожидаясь выпадения других осадков.

Свёртка на группах

Пусть  — группа, оснащённая мерой , и  — две функции, определённые на . Тогда их свёрткой называется функция[источник не указан 1888 дней]

Свёртка мер

Пусть есть борелевское пространство и две меры . Тогда их свёрткой называется мера[источник не указан 1888 дней]

где обозначает произведение мер и .

Свойства

Тогда также абсолютно непрерывна относительно , и её производная Радона — Никодима имеет вид[источник не указан 1888 дней]

  • Если  — вероятностные меры, то также является вероятностной мерой.

Свёртка распределений

Если  — распределения двух независимых случайных величин и , то[источник не указан 1888 дней]

где  — распределение суммы . В частности, если абсолютно непрерывны и имеют плотности , то случайная величина также абсолютно непрерывна и её плотность имеет вид:

См. также

Примечания

  1. Domínguez A.  A History of the Convolution Operation // IEEE Pulse. — 2015. — Vol. 6, no. 1. — P. 38—49. Архивировано 3 февраля 2016 года.
  2. Slyusar, V. I. (27 декабря 1996). "End products in matrices in radar applications" (PDF). Radioelectronics and Communications Systems.– 1998, Vol. 41; Number 3: 50–53. Архивировано (PDF) 27 июля 2020. Дата обращения: 1 августа 2020. {cite journal}: |archive-date= / |archive-url= несоответствие временной метки; предлагается 27 июля 2020 (справка)
  3. Slyusar, V. I. (20 мая 1997). "Analytical model of the digital antenna array on a basis of face-splitting matrix products" (PDF). Proc. ICATT-97, Kyiv: 108–109. Архивировано (PDF) 25 января 2020. Дата обращения: 1 августа 2020. {cite journal}: |archive-date= / |archive-url= несоответствие временной метки; предлагается 25 января 2020 (справка)
  4. Slyusar, V. I. (15 сентября 1997). "New operations of matrices product for applications of radars" (PDF). Proc. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-97), Lviv.: 73–74. Архивировано (PDF) 25 января 2020. Дата обращения: 1 августа 2020. {cite journal}: |archive-date= / |archive-url= несоответствие временной метки; предлагается 25 января 2020 (справка)
  5. Slyusar, V. I. (13 марта 1998). "A Family of Face Products of Matrices and its Properties" (PDF). Cybernetics and Systems Analysis C/C of Kibernetika I Sistemnyi Analiz.- 1999. 35 (3): 379–384. doi:10.1007/BF02733426. Архивировано (PDF) 25 января 2020. Дата обращения: 1 августа 2020. {cite journal}: |archive-date= / |archive-url= несоответствие временной метки; предлагается 25 января 2020 (справка)
  6. Slyusar, V. I. (2003). "Generalized face-products of matrices in models of digital antenna arrays with nonidentical channels" (PDF). Radioelectronics and Communications Systems. 46 (10): 9–17. Архивировано (PDF) 20 сентября 2020. Дата обращения: 1 августа 2020. {cite journal}: |archive-date= / |archive-url= несоответствие временной метки; предлагается 20 сентября 2020 (справка)
  7. Ninh, Pham; Rasmus, Pagh (2013). Fast and scalable polynomial kernels via explicit feature maps. SIGKDD international conference on Knowledge discovery and data mining. Association for Computing Machinery. doi:10.1145/2487575.2487591.

Литература

  • Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа, — М.: Наука, 2004 (7-е изд.).
  • Ширяев А. Н. Вероятность, — М.: Наука. 1989.
  • Напалков В. В. Уравнения свертки в многомерных пространствах. — М., Наука, 1982. — Тираж 3500 экз. — 240 с.

Ссылки