где — произвольное вещественное число (в общем случае комплексное), называемое порядком.
Наиболее часто используемые функции Бесселя — функции целых порядков.
Хотя и порождают одинаковые уравнения, обычно договариваются о том, чтобы им соответствовали разные функции (это делается, например, для того, чтобы функция Бесселя была гладкой по ).
Уравнение Бесселя возникает во время нахождения решений уравнения Лапласа и уравнения Гельмгольца в цилиндрических и сферических координатах. Поэтому функции Бесселя применяются при решении многих задач о распространении волн, статических потенциалах и т. п., например:
распределение интенсивности света, дифрагированного на круглом отверстии;
скорость частиц в цилиндре, заполненном жидкостью и вращающемся вокруг своей оси;
волновые функции в сферически симметричном потенциальном ящике.
Функции Бесселя применяются и в решении других задач, например, при обработке сигналов.
Функция Бесселя является обобщением функции синуса. Ее можно трактовать как колебание струны с переменной толщиной, переменным натяжением (или одновременно обоими условиями); колебаниями в среде с переменными свойствами; колебаниями дисковой мембраны и т. д.
Определения
Поскольку приведённое уравнение является линейным дифференциальным уравнением второго порядка, у него должно быть два линейно независимых решения. Однако в зависимости от обстоятельств выбираются разные определения этих решений. Ниже приведены некоторые из них.
Функции Бесселя первого рода
Функциями Бесселя первого рода, обозначаемыми , являются решения, конечные в точке при целых или неотрицательных . Выбор конкретной функции и её нормализации определяются её свойствами. Можно определить эти функции с помощью разложения в ряд Тейлора около нуля (или в более общий степенной ряд при нецелых ):
Здесь — это гамма-функция Эйлера, обобщение факториала на нецелые значения. График функции Бесселя похож на синусоиду, колебания которой затухают пропорционально , хотя на самом деле нули функции расположены не периодично (однако расстояние между двумя последовательными нулями стремится к при )[1].
Ниже приведены графики для :
Если не является целым числом, функции и линейно независимы и, следовательно, являются решениями уравнения. Но если целое, то верно следующее соотношение:
Оно означает, что в этом случае функции линейно зависимы. Тогда вторым решением уравнения станет функция Бесселя второго рода (см. ниже).
Интегралы Бесселя
Можно дать другое определение функции Бесселя для целых значений , используя интегральное представление:
Этот подход использовал Бессель, изучив с его помощью некоторые свойства функций. Возможно и другое интегральное представление:
Для нахождения интегрального представления функции Бесселя в случае нецелых необходимо учесть, что имеется разрез вдоль оси абсцисс. Это вызвано тем, что подынтегральное выражение более не является -периодическим. Таким образом, контур интегрирования разбивается на 3 участка: луч от до , где , окружность единичного радиуса и луч от до при . Проделав несложные математические преобразования, можно получить следующее интегральное представление:
Нетрудно убедиться, что при целых это выражение переходит в предыдущую формулу.
Функции Неймана
Функции Неймана — решения уравнения Бесселя, бесконечные в точке .
Эта функция связана с следующим соотношением:
где в случае целого берётся предел по , вычисляемый, например, с помощью правила Лопиталя.
Функции Неймана также называются функциями Бесселя второго рода. Линейная комбинация функций Бесселя первого и второго родов являет собой полное решение уравнения Бесселя:
Ниже приведён график для :
В ряде книг функции Неймана обозначаются .
Сферические функции Бесселя
При решении уравнения Гельмгольца в сферических координатах методом разделения переменных уравнение на радиальную часть имеет вид
Два линейно-независимых решения называются сферическими функциями Бесселя jn и yn, и связаны с обычными функциями Бесселя Jn и Неймана Yn с помощью[3]
yn также обозначается nn или ηn; некоторые авторы называют эти функции сферическими функциями Неймана.
Сферические функции Бесселя также могут быть записаны как (формула Релея)[4]
Использование следующего члена асимптотического разложения позволяет значительно уточнить результат. Для функции Бесселя нулевого порядка он выглядит следующим образом:
Ватсон Г. . Теория бесселевых функций. — М.: ИЛ, 1949.
Бейтмен Г., Эрдейи А. .Функции Бесселя, функции параболического цилиндра, ортогональные многочлены // Высшие трансцендентные функции. Т. 2. 2-е изд / Пер. с англ. Н. Я. Виленкина. — М.: Наука, 1974. — 296 с.
Лаврентьев М. А., Шабат Б. В. . Методы теории функций комплексного переменного. — М.: Наука, 1973. — 736 с.