Копенгагенська інтерпретація
Квантова механіка |
---|
Вступ · Історія Математичні основи[en] |
Копенга́генська інтерпрета́ція — імовірнісне трактування рівнянь квантової механіки, в якому вектор стану квантової системи визначає амплітуду ймовірності.
Копенгагенська інтерпретація склалася в 1927 році під час співпраці Вернера Гайзенберга і Нільса Бора в Копенгагені, Данія. На той час склалася ситуація, коли в розпорядженні фізиків були рівняння, що могли з успіхом пояснити й передбачити явища, незрозумілі з погляду класичної фізики. Однак якісні міркування потребували вміння мислити, користуючись новими некласичними поняттями.
Строгого формулювання копенгагенської інтерпретації не існує, оскільки вона складалася, вбираючи в себе ідеї багатьох фізиків[джерело?].
Основні принципи
- Квантова система може бути повністю описана певним вектором стану, який визначає всі доступні спостерігачу знання про неї.
- Опис квантової системи має ймовірнісний характер. Ймовірність події задається квадратом норми вектора стану (Макс Борн).
- Принцип невизначеності Гейзенберга стверджує, що неможливо визначити значення усіх властивостей системи одночасно.
- Квантова система одночасно проявляє властивості, характерні для частинок і хвиль. Цей принцип відомий як корпускулярно-хвильовий дуалізм Луї де Бройля.
- Принцип доповнюваності Нільса Бора стверджує, що експериментально проявляється тільки одна з дуальних властивостей квантової системи, а не обидві відразу.
- Принцип суперпозиції стверджує, що квантова система може перебувати в стані, в якому вимірювання фізичної характеристики може давати різні результати, а хвильова функція лише визначає ймовірність того чи іншого результату.
- Вимірювання є за своєю природою взаємодією квантової системи з класичним приладом. Під час вимірювання когерентність квантового стану руйнується.
- Зі збільшенням розмірів квантової системи її властивості переходять у класичні. Це твердження відоме під назвою принцип відповідності.
Квантовий детермінізм
У квантовій механіці справедливий принцип детермінізму: за відомих початкових умов за допомогою рівнянь руху можна однозначно визначити стан (хвильову функцію) квантової системи в будь-який момент часу. Проте хвильова функція результати вимірювання однозначно не визначає. Ця особливість квантової механіки завжди викликала багато критики й суперечок. Відоме заперечення Альберта Ейнштейна, висловлене на Солвеївському конгресі 1927 року: «Я переконаний, що Бог не грається кубиками». Нільс Бор відповів: «Ейнштейне, не вказуйте Богові, що робити».
Критика
Чимало фізиків вважали копенгагенську інтерпретацію незадовільною, оскільки вона не узгоджувалася з поняттями класичної фізики, зокрема, заперечувала класичний детермінізм. Визначним критиком копенгагенської інтерпретації був Альберт Ейнштейн. Відомі його диспути з Нільсом Бором. Критики вважали можливим пояснення квантових ефектів існуванням ще не відкритих прихованих параметрів.
Однак 1964 року Джон Стюарт Белл опублікував статтю, в якій показав принципові обмеження будь-яких моделей із прихованими параметрами (нерівності Белла), тоді як у ймовірнісній інтерпретації такі обмеження можуть порушуватися. Його підхід дозволив експериментальним шляхом виявити несумісність поведінки реальних квантових систем з моделями на основі локальних прихованих параметрів[1].
Див. також
Джерела
- ↑ Abner Shimony (11 червня 2009). Bell's Theorem. Stanford Encyclopedia of Philosophy. Архів оригіналу за 15 жовтня 2018. Процитовано 2 жовтня 2018.(англ.)
Література
- Ф. Канак // Спостережуваності принцип // Філософський енциклопедичний словник / В. І. Шинкарук (гол. редкол.) та ін. — Київ : Інститут філософії імені Григорія Сковороди НАН України : Абрис, 2002. — С. 606—607. — 742 с. — 1000 екз. — ББК 87я2. — ISBN 966-531-128-X.
Це незавершена стаття з фізики. Ви можете допомогти проєкту, виправивши або дописавши її. |