Ядро (алгебра)
В алгебрі ядром гомоморфізму (функція, яка зберігає структуру) зазвичай є прообраз нуля (за винятком груп, у яких операція є мультиплікативною і ядро є прообразом одиниці). Важливим окремим випадком є ядро лінійного відображення. Ядро матриці, яке також називають нульовим простором, є ядром лінійного відображення, яке визначається цією матрицею.
Ядро гомоморфізму зводиться до 0 (або 1) тоді й лише тоді, коли гомоморфізм є ін'єктивним, тобто, якщо прообраз кожного елемента складається з одного елемента. Це означає, що ядро можна розглядати як міру степеня, при якому гомоморфізм перестає бути ін'єктивним.1
Для деяких типів структур, таких як абелеві групи та векторні простори, можливі ядра є саме підструктурами того ж типу. Це не завжди так, і іноді, можливі ядра мають особливу назву, наприклад, нормальна підгрупа для груп і двосторонній ідеал для кілець.
Ядра дозволяють визначати фактор-об'єкти (в універсальній алгебрі також називаються фактор-алгебрами, а в теорії категорій — коядрами). Для багатьох типів алгебраїчних структур фундаментальна теорема про гомоморфізми (або перша теорема про ізоморфізми) стверджує, що образ гомоморфізму ізоморфний фактор-простору за ядром.
Концепція ядра була розширена на такі структури, для яких існування прообразу окремого елемента недостатньо, щоб довести, що гомоморфізм є ін'єктивним. У цих випадках ядро є відношенням конгруентності. Ця стаття є оглядом деяких важливих типів ядер в алгебраїчних структурах.
Лінійні простори
Нехай і — векторні простори над полем (або, у загальному випадку, модулі над кільцем), а — лінійне відображення, що діє з простору у простір (). Якщо нульовий вектор з простору , тоді ядро лінійного відображення є прообразом нульового підпростору ; тобто підмножина простору , що складається з усіх тих елементів, що належать простору , які відображаються у елемент . Ядро зазвичай позначають як або використовують варіації наступного запису:
Оскільки лінійне відображення зберігає нульові вектори, то нульовий вектор з простору повинен належати ядру. Перетворення є ін'єктивним тоді й лише тоді, коли його ядро породжене лише нульовим підпростором.
Ядро завжди є лінійним підпростором простору . Отже, є сенс говорити про фактор-простір . Перша теорема про ізоморфізм для векторних просторів стверджує, що цей фактор-простір природно ізоморфний образу відображення (який є підпростором простору ). Як наслідок, розмірність простору дорівнює розмірності ядра плюс розмірність образу:
Якщо і скінченновимірні простори в яких зафіксовано базиси, то лінійне відображення можна представити матрицею , а ядро можна знайти, розв'язавши однорідну систему лінійних рівнянь . У цьому випадку ядро лінійного відображення може бути одночасно визначено ядром матриці , яке також називають «нульовим простором» матриці . Розмірність нульового простору матриці , яку називають дефектом матриці , визначається кількістю стовпців матриці мінус ранг матриці , як наслідок теореми про ранг i дефект[en].
Розв'язування однорідних диференціальних рівнянь часто зводиться до обчислення ядра певних диференціальних операторів. Наприклад, знайдемо всі двічі диференційовані функції , які визначені на дійсній прямій, такі, що
Нехай — простір усіх двічі диференційованих функцій, — простір усіх функцій. Визначимо лінійний оператор , що діє з простору у простір , наступним чином:
де , — довільне дійсне число. Тоді всі розв'язки диференціального рівняння належать .
Аналогічним чином можна визначити ядра для гомоморфізмів між модулями над кільцем. Це включає ядра гомоморфізмів між абелевими групами як частинний випадок. Цей приклад відображає суть ядер у загальних абелевих категоріях; див. ядро (теорія категорій).
Гомоморфізм груп
Нехай та — групи, а — гомоморфізм груп з в . Якщо — нейтральний елемент з групи , то ядро гомоморфізму — це прообраз одноелементної множини ; тобто підмножини групи , що складається з усіх тих елементів групи , які відображаються у елемент . Ядро зазвичай позначають . У символьній формі:
Оскільки гомоморфізм групи зберігає нейтральні елементи, то нейтральний елемент групи належить ядру.
Гомоморфізм є ін'єктивним тоді й лише тоді, коли його ядром є одноелементна множина . Якщо гомоморфізм неін'єктивний, тоді неін'єктивні елементи можуть утворювати окремий елемент його ядра: тобто існують елементи , такі що і . Таким чином, . — це груповий гомоморфізм, тому обернені та групові операції зберігаються, а тому ; іншими словами і не є одноелементним. і навпаки, різні елементи ядра прямо порушують ін'єктивність: якщо б існував елемент , тоді і, таким чином, не був би ін'єктивним.
— це підгрупа групи і крім того нормальна підгрупа. Отже, існує відповідна фактор-група . За першою теоремою про ізоморфізм для груп вона ізоморфна , образу групи при відображенні (яка теж є підгрупою групи ).
У частинному випадку абелевих груп немає ніяких відхилень від попереднього пункту.
Приклад
Нехай — циклічна група з 6 елементів з додаванням за модулем, — циклічна група з двох елементів з додаванням за модулем, а — гомоморфізм, який відображає кожен елемент в елемент за модулем . Тоді , оскільки всі ці елементи відображаються в . Фактор-група має два елементи: та . Вона дійсно ізоморфна групі .
Гомоморфізми кілець
Нехай і — кільця (вважатимемо їх унітарними), а — гомоморфізм кільця, що діє з до (). Якщо — нульовий елемент кільця[en] , то ядро гомоморфізму є його ядром як лінійного відображення над цілими числами, або, еквівалентно, як адитивної групи. Це прообраз нульового ідеалу[en] , який є підмножиною кільця , що складається з усіх тих елементів кільця , які відображаються гомоморфізмом в елемент . Ядро зазвичай позначають як (або інші варіації цього позначення). У символьній формі:
Оскільки гомоморфізм кільця зберігає нульові елементи, нульовий елемент кільця повинен належати ядру. Гомоморфізм є ін'єктивним тоді і лише тоді, коли його ядром є лише одноелементна множина . Це завжди має місце, якщо кільце є полем, а кільце не є нульовим кільцем[en].
Оскільки містить мультиплікативну одиницю лише тоді, коли є нульовим кільцем, то ядро у загальному випадку не є підкільцем кільця . Ядро є псевдокільцем[en], а точніше, двостороннім ідеалом кільця . Таким чином, має сенс говорити про фактор-кільце . Перша теорема про ізоморфізм кілець стверджує, що це фактор-кільце природно ізоморфне образу гомоморфізму (який є підкільцем кільця ). (Зауважте, що кільця не обов'язково повинні бути унітарними для визначення ядра).
У деякій мірі це можна розглядати як частинний випадок ситуації з модулями, оскільки всі вони є бімодулями над кільцем :
- саме ,
- двосторонній ідеал кільця (наприклад, ),
- будь-яке фактор-кільце кільця (наприклад, ),
- кообласть[en] будь-якого гомоморфізму кільця областю якого є (наприклад, кільце — кообласть гомоморфізму ).
Однак теорема про ізоморфізм дає сильніший результат, оскільки ізоморфізми кілець зберігають множення, а ізоморфізми модулів (навіть між кільцями) взагалі ні. Цей приклад розкриває суть ядер у загальних алгебрах Мальцева.
Гомоморфізми моноїдів
Нехай та — моноїди, та нехай — гомоморфізм моноїдів[en] з в . Тоді ядро гомоморфізму — це підмножина прямого добутку , що складається з усіх впорядкованих пар елементів з , обидві компоненти яких відображаються за допомогою у один і той самий елемент з . Ядро зазвичай позначають . У символьній формі:
Оскільки є функцією, то елементи виду повинні належати ядру. Гомоморфізм є ін'єктивним тоді й лише тоді, коли його ядром є лише діагональна множина .
Виявляється, що є відношенням еквівалентності на , і фактично відношенням конгруентності. Таким чином, має сенс говорити про фактор-моноїд . Перша теорема про ізоморфізм для моноїдів стверджує, що цей фактор-моноїд природно ізоморфний образу гомоморфізму (який є підмоноїдом моноїда ; для відношення конгруентності). Це суттєво відрізняється від наведених вище прикладів. Зокрема, прообразу нейтрального елементу з недостатньо для визначення ядра гомоморфізму .
Універсальні алгебри
Усі вищезазначені випадки можуть бути уніфіковані й узагальнені в універсальній алгебрі.
Загальний випадок
Нехай і — алгебраїчні структури заданого типу і — гомоморфізм цього типу з в . Тоді ядро — це підмножина прямого добутку , що складається з усіх тих упорядкованих пар елементів з , обидва компоненти яких відображаються за допомогою у один і той самий елемент з . Ядро зазвичай позначається . У символьній формі:
Оскільки є функцією, то елементи виду повинні належати ядру. Гомоморфізм є ін’єктивним тоді й лише тоді, коли його ядро є діагональною множиною .
Легко побачити, що є відношенням еквівалентності на , і фактично відношенням конгруентності. Таким чином, має сенс говорити про фактор-алгебру . Перша теорема про ізоморфізм в загальній універсальній алгебри стверджує, що ця фактор-алгебра природно ізоморфна образу гомоморфізму (який є підалгеброю в ). Зауважимо, що означення ядра тут (як у моноїдному прикладі) не залежить від алгебраїчної структури; це суто теоретико-множинне поняття. Докладніше про це загальне поняття, за межами абстрактної алгебри, дивись ядро функції[en].
Алгебри Мальцева
У випадку алгебр Мальцева цю конструкцію можна спростити. Кожна алгебра Мальцева має спеціальний нейтральний елемент (нульовий вектор у випадку векторних просторів, одиничний елемент у випадку комутативних груп і нульовий елемент у випадку кілець або модулів). Характерною особливістю алгебри Мальцева є те, що можна відновити всі відношення еквівалентності з класу еквівалентності нейтрального елемента.
Точніше, нехай і — алгебраїчні структури Мальцева даного типу, а — гомоморфізм цього типу з в . Якщо — нейтральний елемент з , то ядро гомоморфізму — прообраз одноелементної множини ; тобто підмножина множини , що складається з усіх тих елементів множини , які відображаються за допомогою в елемент . Ядро зазвичай позначають (або його варіація). У символьній формі:
Оскільки гомоморфізм алгебри Мальцева зберігає нейтральні елементи, то нейтральний елемент множини повинен належати ядру. Гомоморфізм є ін’єкивним тоді й лише тоді, коли його ядром є лише одноелементна множина .
Поняття ідеалу узагальнюється на будь-яку алгебру Мальцева (як лінійний підпростір у випадку векторних просторів, нормальна підгрупа у випадку груп, двосторонні ідеали у випадку кілець, і підмодуль у випадку модулів). Виявляється, що не є підалгеброю в , а є ідеалом. Тоді є сенс говорити про фактор-алгебру . Перша теорема про ізоморфізм для алгебр Мальцева стверджує, що ця фактор-алгебра природно ізоморфна образу відображення (який є підалгеброю в ).
Зв’язок між цим і відношенням конгруентності для більш загальних типів алгебр полягає в наступному. По-перше, ядро як ідеал є класом еквівалентності нейтрального елемента відносно ядра як конгруенції. Для зворотного напрямку потрібне поняття фактору в алгебрі Мальцева (яке є діленням з обох сторін для груп і відніманням для векторних просторів, модулів і кілець). Використовуючи це, елементи і з є еквівалентними відносно ядра як конгруенції тоді й лише тоді, коли їх відношення є елементом ядра як ідеалу.
Алгебри з неалгебраїчними струкутрами
Іноді алгебри оснащені неалгебраїчною структурою на додаток до їх алгебраїчних операцій. Наприклад, можна розглядати топологічні групи або топологічні векторні простори оснащені топологією. У цьому випадку можна очікувати, що гомоморфізм збереже цю додаткову структуру; у топологічних прикладах вимагаємо, щоб було неперервним відображенням. Процес може зіткнутися з проблемою фактор-алгебр, які можуть поводитися не дуже добре. У топологічних прикладах можна уникнути проблем, вимагаючи, щоб топологічні алгебраїчні структури були гаусдорфовими (як це зазвичай робиться); тоді ядро (як би воно не було побудовано) буде замкненою множиною, а фактор-простір працюватиме нормально (а також буде хаусдорфовим).
Ядро в теорії категорій
Поняття ядра в теорії категорій є узагальненням ядра абелевих алгебр; дивись ядро (теорія категорій). Категоріальним узагальненням ядра як відношення конгруентності є пара ядер[en]. (Існує також поняття різницевого ядра[en] або бінарного стабілізатора[en].)
Властивості
Основні властивості ядра гомоморфізму в статтях:
Див. також
- Ядро (математика)
- Ядро інтегрального оператора
- Ядро лінійного оператора
- Ядро (лінійна алгебра)
- Нульова множина
Література
- Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). Wiley. ISBN 0-471-43334-9.
- Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X.