Алгебрична структура

Алгебрична структура
Досліджується в абстрактна алгебра і Універсальна алгебра Редагувати інформацію у Вікіданих
CMNS: Алгебрична структура у Вікісховищі Редагувати інформацію у Вікіданих

Алгебрична структура (алгебрична система) — в математиці це непорожня множина з заданим на ній набором операцій та відношень, що задовільняють деякій системи аксіом.

Основним завданням абстрактної алгебри є вивчення властивостей аксіоматично заданих алгебричних систем.

Формально: об'єкт де:

  •  — непорожня множина,
  •  — множина алгебричних операцій визначених на
  •  — множина відношень визначених на

Множина називається носієм алгебричної системи. Множини називається сигнатурою алгебричної системи.

Якщо алгебрична система не містить операцій, вона називається моделлю, якщо не містить відношень, то — алгеброю.

Якщо не розглядають ніяких аксіом, яким мають задовільняти операції, то алгебрична система називається універсальною алгеброю заданої сигнатури .

Для алгебричних структур визначають морфізми, як відображення що зберігають операції (дивись гомоморфізм). Таким чином визначають категорії.

Якщо множина має властивості топологічного простору і операції є неперервними, то таку алгебричну систему називають топологічною алгебричною системою (наприклад, топологічна група).

Не всі алгебричні конструкції описуються алгебричними системами, є ще коалгебри, біалгебри, алгебри Гопфа і комодулі над ними і т. д

Алгебричні операції

-арна операція на — це відображення прямого добутку екземплярів множини в саму множину . За визначенням, нуль-арна операція — це просто виділений елемент множини.

Найчастіше розглядають унарні і бінарні операції, як найпростіші. Але для потреб топології, алгебри, комбінаторики вивчають операції більшої арності, наприклад, теорія операд і алгебр над ними (мультиоператорних алгебр).

Список алгебричних систем

M = магма, Q = квазігрупа, S = напівгрупа,
L = Лупа, N = моноїд, G = група,
d = ділення, a = асоціативність,
e = з одиницею, i = існування оберненого
  • Множина може вважатись виродженою алгебричною системою з порожньою сигнатурою.

Групо-подібні (одна бінарна операція)

тобто рівняння завжди має єдиний роз'вязок
  • Квазігрупа — одночасно права і ліва квазігрупи.
    • Лупа(Петля)квазігрупа з одиницею (унітарна квазігрупа):
  • Напівгрупаасоціативна магма:
    • Моноїднапівгрупа з одиницею (унітарна напівгрупа).
  • Групамоноїд з діленням чи асоціативна лупа:
  • Абелева групакомутативна група:
Операцію в абелевій групі часто називають додаванням (+) а нейтральний елемент — нулем.

Кільцеподібні (дві бінарні операції узгоджені дистрибутивністю)

  • Півкільце — подібне до кільця, але без оберненості додавання (комутативний моноїд по додаванню і моноїд по множенню).
  • Кільце — структура с двома бінарними операціями: абелева група по додаванню, моноїд по множенню,
виконується дистрибутивний закон: .

Модулі (множення тільки на скаляр)

Алгебри (додавання, множення на скаляр, множення)

  • Алгебра над операдою — одна з найзагальніших алгебричних систем. Сама операда грає роль сигнатури алгебри.

Решітки

Див. також

Джерела